Python合并多个相交矩形框

2023-10-17 22:12

本文主要是介绍Python合并多个相交矩形框,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python合并多个相交矩形框

  • 前言
  • 前提条件
  • 相关介绍
  • 实验环境
  • Python合并多个相交矩形框
    • 代码实现

在这里插入图片描述

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

前提条件

  • 熟悉Python

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。

实验环境

  • Python 3.x (面向对象的高级语言)

Python合并多个相交矩形框

在这里插入图片描述

代码实现

在这里插入图片描述

import cv2
import numpy as npdef xyxy2xywh(rect):'''(x1,y1,x2,y2) -> (x,y,w,h)'''return [rect[0],rect[1],rect[2]-rect[0],rect[3]-rect[1]]def xywh2xyxy(rect):'''(x,y,w,h) -> (x1,y1,x2,y2)'''return [rect[0],rect[1],rect[0]+rect[2],rect[1]+rect[3]]def is_RecA_RecB_interSect(RecA, RecB): # Rec = [xmin,ymin,xmax,ymax]# 获取交集区域的[xmin,ymin,xmax,ymax]x_A_and_B_min = max(RecA[0], RecB[0])y_A_and_B_min = max(RecA[1], RecB[1])x_A_and_B_max = min(RecA[2], RecB[2])y_A_and_B_max = min(RecA[3], RecB[3])# 计算交集部分面积, 当(xmax - xmin)为负时,说明A与B框无交集,直接置为0。 (ymax - ymin)同理。interArea = max(0, x_A_and_B_max - x_A_and_B_min) * max(0, y_A_and_B_max - y_A_and_B_min)return interArea > 0def merge_RecA_RecB(RecA, RecB): # Rec = [xmin,ymin,xmax,ymax]# 获取合并区域的[xmin,ymin,xmax,ymax]xmin = min(RecA[0], RecB[0])ymin = min(RecA[1], RecB[1])xmax = max(RecA[2], RecB[2])ymax = max(RecA[3], RecB[3])return [xmin,ymin, xmax,ymax]# def merge_rect(box,box_len):
#     if  box_len== 1:
#         return box#     for i in range(box_len):
#         RecA_xywh = box[i]
#         RecA_xyxy = xywh2xyxy(RecA_xywh)
#         for j in range(i+1,box_len):
#             RecB_xywh = box[j]
#             RecB_xyxy = xywh2xyxy(RecB_xywh)
#             print(is_RecA_RecB_interSect(RecA_xyxy, RecB_xyxy))
#             if is_RecA_RecB_interSect(RecA_xyxy, RecB_xyxy):
#                 rect_xyxy = merge_RecA_RecB(RecA_xyxy, RecB_xyxy)
#                 rect_xywh = xyxy2xywh(rect_xyxy)
#                 box.remove(RecA_xywh)
#                 box.remove(RecB_xywh)
#                 box.append(rect_xywh)
#                 box_len = len(box)
#                 merge_rect(box,box_len)
#                 # 此处少了return box会报错
#     return box# def merge_rect(box, box_len):#     if box_len == 1:
#         return box#     for i in range(box_len):
#         RecA_xywh = box[i]
#         RecA_xyxy = xywh2xyxy(RecA_xywh)
#         for j in range(i+1, box_len):
#             RecB_xywh = box[j]
#             RecB_xyxy = xywh2xyxy(RecB_xywh)
#             if is_RecA_RecB_interSect(RecA_xyxy, RecB_xyxy):
#                 rect_xyxy = merge_RecA_RecB(RecA_xyxy, RecB_xyxy)
#                 rect_xywh = xyxy2xywh(rect_xyxy)
#                 # 使用remove(elem)来移除元素
#                 box.remove(RecA_xywh)
#                 box.remove(RecB_xywh)#                 box.append(rect_xywh)
#                 box_len = len(box)
#                 merge_rect(box, box_len)
#                 # 返回上一级循环,避免重复处理已合并的矩形
#                 return box
#     return box'''
递归是一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,
它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解。
因此递归过程,最重要的就是查看能不能讲原本的问题分解为更小的子问题,这是使用递归的关键。终止条件:矩形框数为1或者为空。返回值: 新合并的矩形框本级任务: 每一级需要做的就是遍历从它开始的后续矩形框,寻找可以和他合并的矩形'''
def merge_rect(box):'''合并重叠框 输入参数: box :[[x,y,w,h],...]返回:合并后的box:[[x,y,w,h],...]'''if len(box) == 1 or len(box) == 0 : # 矩形框数为1或者为空return boxfor i in range(len(box)):RecA_xywh = box[i]RecA_xyxy = xywh2xyxy(RecA_xywh)for j in range(i+1, len(box)):RecB_xywh = box[j]RecB_xyxy = xywh2xyxy(RecB_xywh)if is_RecA_RecB_interSect(RecA_xyxy, RecB_xyxy):rect_xyxy = merge_RecA_RecB(RecA_xyxy, RecB_xyxy)rect_xywh = xyxy2xywh(rect_xyxy)# 使用remove(elem)来移除元素box.remove(RecA_xywh)box.remove(RecB_xywh)box.append(rect_xywh)merge_rect(box)# 返回上一级循环,避免重复处理已合并的矩形return boxreturn boxif __name__=="__main__":# 原始box = [[256,256,10,10],[10,10,15,15],[20,20,10,10],[100,100,150,150],[200,200,100,100],[400,400,15,15],[410,410,15,15],[420,420,10,10]] # (x,y,w,h)print("原始的矩形框:",box)img = np.ones([512, 512, 3], np.uint8)for x,y,w,h in box:img = cv2.rectangle(img, (x,y), (x+w,y+h), (0, 255, 0), 2)cv2.imshow('origin', img)# 合并后merged_box =  merge_rect(box)print("合并的矩形框:",merged_box)img = np.ones([512, 512, 3], np.uint8) for x,y,w,h in merged_box:img = cv2.rectangle(img, (x,y), (x+w,y+h), (0, 0, 255), 2)cv2.imshow('merged', img)cv2.waitKey(0)cv2.destroyAllWindows()

在这里插入图片描述

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

这篇关于Python合并多个相交矩形框的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/228286

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

day-51 合并零之间的节点

思路 直接遍历链表即可,遇到val=0跳过,val非零则加在一起,最后返回即可 解题过程 返回链表可以有头结点,方便插入,返回head.next Code /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}*

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

poj 1127 线段相交的判定

题意: 有n根木棍,每根的端点坐标分别是 px, py, qx, qy。 判断每对木棍是否相连,当他们之间有公共点时,就认为他们相连。 并且通过相连的木棍相连的木棍也是相连的。 解析: 线段相交的判定。 首先,模板中的线段相交是不判端点的,所以要加一个端点在直线上的判定; 然后,端点在直线上的判定这个函数是不判定两个端点是同一个端点的情况的,所以要加是否端点相等的判断。 最后

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

zoj 1721 判断2条线段(完全)相交

给出起点,终点,与一些障碍线段。 求起点到终点的最短路。 枚举2点的距离,然后最短路。 2点可达条件:没有线段与这2点所构成的线段(完全)相交。 const double eps = 1e-8 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip