Python之路第一课Day11--随堂笔记(异步IO\数据库\队列\缓存之二)

本文主要是介绍Python之路第一课Day11--随堂笔记(异步IO\数据库\队列\缓存之二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、RabbitMQ队列  

1.安装:

a.官网:

      安装 http://www.rabbitmq.com/install-standalone-mac.html

b.安装python rabbitMQ module 

pip install pika
or
easy_install pika
or
源码
https://pypi.python.org/pypi/pika

2.实现最简单的队列通信

a.示意图

3.代码:

a.send端

#!/usr/bin/env python
import pikaconnection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))
channel = connection.channel()#声明queue
channel.queue_declare(queue='hello')#n RabbitMQ a message can never be sent directly to the queue, it always needs to go through an exchange.
channel.basic_publish(exchange='',routing_key='hello',body='Hello World!')
print(" [x] Sent 'Hello World!'")
connection.close()

b.receive

#!/usr/bin/env python
# -*- conding:utf-8 -*-
__Author__ = "YoungCheung"
import pikaconnection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))
channel = connection.channel()#You may ask why we declare the queue again ‒ we have already declared it in our previous code.
# We could avoid that if we were sure that the queue already exists. For example if send.py program
#was run before. But we're not yet sure which program to run first. In such cases it's a good
# practice to repeat declaring the queue in both programs.
channel.queue_declare(queue='hello')def callback(ch, method, properties, body):print(" [x] Received %r" % body)channel.basic_consume(callback,queue='hello',no_ack=True)print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

二、Work Queues

1.示意图

在这种模式下,RabbitMQ会默认把p发的消息依次分发给各个消费者(c),跟负载均衡差不

2.代码

a.消息提供者

import pika
connection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))
channel = connection.channel()#声明queue
channel.queue_declare(queue='task_queue')#n RabbitMQ a message can never be sent directly to the queue, it always needs to go through an exchange.
import sysmessage = ' '.join(sys.argv[1:]) or "Hello World!"
channel.basic_publish(exchange='',routing_key='task_queue',body=message,properties=pika.BasicProperties(delivery_mode = 2, # make message persistent
                      ))
print(" [x] Sent %r" % message)
connection.close()

 

 b.消费者代码

import pika,timeconnection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))
channel = connection.channel()def callback(ch, method, properties, body):print(" [x] Received %r" % body)time.sleep(body.count(b'.'))print(" [x] Done")ch.basic_ack(delivery_tag = method.delivery_tag)channel.basic_consume(callback,queue='task_queue',)print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

   此时,先启动消息生产者,然后再分别启动3个消费者,通过生产者多发送几条消息,会发现,几条消息会被依次分配到各个消费者身上。  

  Doing a task can take a few seconds. You may wonder what happens if one of the consumers starts a long task and dies with it only partly done. With our current code once RabbitMQ delivers message to the customer it immediately removes it from memory. In this case, if you kill a worker we will lose the message it was just processing. We'll also lose all the messages that were dispatched to this particular worker but were not yet handled.

  But we don't want to lose any tasks. If a worker dies, we'd like the task to be delivered to another worker.

  In order to make sure a message is never lost, RabbitMQ supports message acknowledgments. An ack(nowledgement) is sent back from the consumer to tell RabbitMQ that a particular message had been received, processed and that RabbitMQ is free to delete it.

  If a consumer dies (its channel is closed, connection is closed, or TCP connection is lost) without sending an ack, RabbitMQ will understand that a message wasn't processed fully and will re-queue it. If there are other consumers online at the same time, it will then quickly redeliver it to another consumer. That way you can be sure that no message is lost, even if the workers occasionally die.

  There aren't any message timeouts; RabbitMQ will redeliver the message when the consumer dies. It's fine even if processing a message takes a very, very long time.

  Message acknowledgments are turned on by default. In previous examples we explicitly turned them off via the no_ack=True flag. It's time to remove this flag and send a proper acknowledgment from the worker, once we're done with a task.

def callback(ch, method, properties, body):print " [x] Received %r" % (body,)time.sleep( body.count('.') )print " [x] Done"ch.basic_ack(delivery_tag = method.delivery_tag)channel.basic_consume(callback,queue='hello')

   Using this code we can be sure that even if you kill a worker using CTRL+C while it was processing a message, nothing will be lost. Soon after the worker dies all unacknowledged messages will be redelivered

  三、消息持久化

   We have learned how to make sure that even if the consumer dies, the task isn't lost(by default, if wanna disable  use no_ack=True). But our tasks will still be lost if RabbitMQ server stops.

  When RabbitMQ quits or crashes it will forget the queues and messages unless you tell it not to. Two things are required to make sure that messages aren't lost: we need to mark both the queue and messages as durable.

  First, we need to make sure that RabbitMQ will never lose our queue. In order to do so, we need to declare it as durable:

channel.queue_declare(queue='hello', durable=True)

   This queue_declare change needs to be applied to both the producer and consumer code.

  At that point we're sure that the task_queue queue won't be lost even if RabbitMQ restarts. Now we need to mark our messages as persistent - by supplying a delivery_mode property with a value 2.

channel.basic_publish(exchange='',routing_key="task_queue",body=message,properties=pika.BasicProperties(delivery_mode = 2, # make message persistent))

 四、消息公布平台

   如果Rabbit只管按顺序把消息发到各个消费者身上,不考虑消费者负载的话,很可能出现,一个机器配置不高的消费者那里堆积了很多消息处理不完,同时配置高的消费者却一直很轻松。为解决此问题,可以在各个消费者端,配置perfetch=1,意思就是告诉RabbitMQ在我这个消费者当前消息还没处理完的时候就不要再给我发新消息了。

 1.示意图

channel.basic_qos(prefetch_count=1)

2.带消息持久化+公平分发的完整代码

 1.生产者端

#!/usr/bin/env python
import pika
import sysconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.queue_declare(queue='task_queue', durable=True)message = ' '.join(sys.argv[1:]) or "Hello World!"
channel.basic_publish(exchange='',routing_key='task_queue',body=message,properties=pika.BasicProperties(delivery_mode = 2, # make message persistent
                      ))
print(" [x] Sent %r" % message)
connection.close()

2.消费者 

#!/usr/bin/env python
import pika
import timeconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.queue_declare(queue='task_queue', durable=True)
print(' [*] Waiting for messages. To exit press CTRL+C')def callback(ch, method, properties, body):print(" [x] Received %r" % body)time.sleep(body.count(b'.'))print(" [x] Done")ch.basic_ack(delivery_tag = method.delivery_tag)channel.basic_qos(prefetch_count=1)
channel.basic_consume(callback,queue='task_queue')channel.start_consuming()

 五、Publish\Subscribe(消息发布\订阅) 

  之前的例子都基本都是1对1的消息发送和接收,即消息只能发送到指定的queue里,但有些时候你想让你的消息被所有的Queue收到,类似广播的效果,这时候就要用到exchange了,

  An exchange is a very simple thing. On one side it receives messages from producers and the other side it pushes them to queues. The exchange must know exactly what to do with a message it receives. Should it be appended to a particular queue? Should it be appended to many queues? Or should it get discarded. The rules for that are defined by the exchange type.

Exchange在定义的时候是有类型的,以决定到底是哪些Queue符合条件,可以接收消息

fanout: 所有bind到此exchange的queue都可以接收消息
direct: 通过routingKey和exchange决定的那个唯一的queue可以接收消息
topic:所有符合routingKey(此时可以是一个表达式)的routingKey所bind的queue可以接收消息
   表达式符号说明:#代表一个或多个字符,*代表任何字符
      例:#.a会匹配a.a,aa.a,aaa.a等
          *.a会匹配a.a,b.a,c.a等
     注:使用RoutingKey为#,Exchange Type为topic的时候相当于使用fanout 

headers: 通过headers 来决定把消息发给哪些queue

1.消息publisher

import pika
import sysconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.exchange_declare(exchange='logs',type='fanout')message = ' '.join(sys.argv[1:]) or "info: Hello World!"
channel.basic_publish(exchange='logs',routing_key='',body=message)
print(" [x] Sent %r" % message)
connection.close()

 

2. 消息subscriber

import pikaconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.exchange_declare(exchange='logs',type='fanout')result = channel.queue_declare(exclusive=True) #不指定queue名字,rabbit会随机分配一个名字,exclusive=True会在使用此queue的消费者断开后,自动将queue删除
queue_name = result.method.queuechannel.queue_bind(exchange='logs',queue=queue_name)print(' [*] Waiting for logs. To exit press CTRL+C')def callback(ch, method, properties, body):print(" [x] %r" % body)channel.basic_consume(callback,queue=queue_name,no_ack=True)channel.start_consuming()

六、有选择的接收消息(exchange type=direct) 

   RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。

 

1.publisher

import pika
import sysconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.exchange_declare(exchange='direct_logs',type='direct')severity = sys.argv[1] if len(sys.argv) > 1 else 'info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(exchange='direct_logs',routing_key=severity,body=message)
print(" [x] Sent %r:%r" % (severity, message))
connection.close()

 

 2.subscriber 

import pika
import sysconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.exchange_declare(exchange='direct_logs',type='direct')result = channel.queue_declare(exclusive=True)
queue_name = result.method.queueseverities = sys.argv[1:]
if not severities:sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])sys.exit(1)for severity in severities:channel.queue_bind(exchange='direct_logs',queue=queue_name,routing_key=severity)print(' [*] Waiting for logs. To exit press CTRL+C')def callback(ch, method, properties, body):print(" [x] %r:%r" % (method.routing_key, body))channel.basic_consume(callback,queue=queue_name,no_ack=True)channel.start_consuming()

 

 七、更细致的消息过滤

   Although using the direct exchange improved our system, it still has limitations - it can't do routing based on multiple criteria.

  In our logging system we might want to subscribe to not only logs based on severity, but also based on the source which emitted the log. You might know this concept from the syslog unix tool, which routes logs based on both severity (info/warn/crit...) and facility (auth/cron/kern...).

  That would give us a lot of flexibility - we may want to listen to just critical errors coming from 'cron' but also all logs from 'kern'.

Although using the direct exchange improved our system, it still has limitations - it can't do routing based on multiple criteria.

In our logging system we might want to subscribe to not only logs based on severity, but also based on the source which emitted the log. You might know this concept from the syslog unix tool, which routes logs based on both severity (info/warn/crit...) and facility (auth/cron/kern...).

That would give us a lot of flexibility - we may want to listen to just critical errors coming from 'cron' but also all logs from 'kern'.

 

1.publisher

import pika
import sysconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.exchange_declare(exchange='topic_logs',type='topic')routing_key = sys.argv[1] if len(sys.argv) > 1 else 'anonymous.info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(exchange='topic_logs',routing_key=routing_key,body=message)
print(" [x] Sent %r:%r" % (routing_key, message))
connection.close()

 

2.subscriber

import pika
import sysconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.exchange_declare(exchange='topic_logs',type='topic')result = channel.queue_declare(exclusive=True)
queue_name = result.method.queuebinding_keys = sys.argv[1:]
if not binding_keys:sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])sys.exit(1)for binding_key in binding_keys:channel.queue_bind(exchange='topic_logs',queue=queue_name,routing_key=binding_key)print(' [*] Waiting for logs. To exit press CTRL+C')def callback(ch, method, properties, body):print(" [x] %r:%r" % (method.routing_key, body))channel.basic_consume(callback,queue=queue_name,no_ack=True)channel.start_consuming()

 

 To receive all the logs run:

python receive_logs_topic.py "#"

To receive all logs from the facility "kern":

python receive_logs_topic.py "kern.*"

Or if you want to hear only about "critical" logs:

python receive_logs_topic.py "*.critical"

You can create multiple bindings:

python receive_logs_topic.py "kern.*" "*.critical"

And to emit a log with a routing key "kern.critical" type:

python emit_log_topic.py "kern.critical" "A critical kernel error"

八、Remote procedure call (RPC)

To illustrate how an RPC service could be used we're going to create a simple client class. It's going to expose a method named call which sends an RPC request and blocks until the answer is received:

fibonacci_rpc = FibonacciRpcClient()
result = fibonacci_rpc.call(4)
print("fib(4) is %r" % result)

  

1.RPC server

import pika
import time
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))channel = connection.channel()channel.queue_declare(queue='rpc_queue')def fib(n):if n == 0:return 0elif n == 1:return 1else:return fib(n-1) + fib(n-2)def on_request(ch, method, props, body):n = int(body)print(" [.] fib(%s)" % n)response = fib(n)ch.basic_publish(exchange='',routing_key=props.reply_to,properties=pika.BasicProperties(correlation_id = \props.correlation_id),body=str(response))ch.basic_ack(delivery_tag = method.delivery_tag)channel.basic_qos(prefetch_count=1)
channel.basic_consume(on_request, queue='rpc_queue')print(" [x] Awaiting RPC requests")
channel.start_consuming()

 

2.RPC client

import pika
import uuidclass FibonacciRpcClient(object):def __init__(self):self.connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))self.channel = self.connection.channel()result = self.channel.queue_declare(exclusive=True)self.callback_queue = result.method.queueself.channel.basic_consume(self.on_response, no_ack=True,queue=self.callback_queue)def on_response(self, ch, method, props, body):if self.corr_id == props.correlation_id:self.response = bodydef call(self, n):self.response = Noneself.corr_id = str(uuid.uuid4())self.channel.basic_publish(exchange='',routing_key='rpc_queue',properties=pika.BasicProperties(reply_to = self.callback_queue,correlation_id = self.corr_id,),body=str(n))while self.response is None:self.connection.process_data_events()return int(self.response)fibonacci_rpc = FibonacciRpcClient()print(" [x] Requesting fib(30)")
response = fibonacci_rpc.call(30)
print(" [.] Got %r" % response)

 

九、Memcached & Redis使用 

http://www.cnblogs.com/wupeiqi/articles/5132791.html  

  

 

转载于:https://www.cnblogs.com/youngcheung/p/5972517.html

这篇关于Python之路第一课Day11--随堂笔记(异步IO\数据库\队列\缓存之二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/227277

相关文章

Python实现文件下载、Cookie以及重定向的方法代码

《Python实现文件下载、Cookie以及重定向的方法代码》本文主要介绍了如何使用Python的requests模块进行网络请求操作,涵盖了从文件下载、Cookie处理到重定向与历史请求等多个方面,... 目录前言一、下载网络文件(一)基本步骤(二)分段下载大文件(三)常见问题二、requests模块处理

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

数据库oracle用户密码过期查询及解决方案

《数据库oracle用户密码过期查询及解决方案》:本文主要介绍如何处理ORACLE数据库用户密码过期和修改密码期限的问题,包括创建用户、赋予权限、修改密码、解锁用户和设置密码期限,文中通过代码介绍... 目录前言一、创建用户、赋予权限、修改密码、解锁用户和设置期限二、查询用户密码期限和过期后的修改1.查询用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处