Python之路第一课Day11--随堂笔记(异步IO\数据库\队列\缓存之二)

本文主要是介绍Python之路第一课Day11--随堂笔记(异步IO\数据库\队列\缓存之二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、RabbitMQ队列  

1.安装:

a.官网:

      安装 http://www.rabbitmq.com/install-standalone-mac.html

b.安装python rabbitMQ module 

pip install pika
or
easy_install pika
or
源码
https://pypi.python.org/pypi/pika

2.实现最简单的队列通信

a.示意图

3.代码:

a.send端

#!/usr/bin/env python
import pikaconnection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))
channel = connection.channel()#声明queue
channel.queue_declare(queue='hello')#n RabbitMQ a message can never be sent directly to the queue, it always needs to go through an exchange.
channel.basic_publish(exchange='',routing_key='hello',body='Hello World!')
print(" [x] Sent 'Hello World!'")
connection.close()

b.receive

#!/usr/bin/env python
# -*- conding:utf-8 -*-
__Author__ = "YoungCheung"
import pikaconnection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))
channel = connection.channel()#You may ask why we declare the queue again ‒ we have already declared it in our previous code.
# We could avoid that if we were sure that the queue already exists. For example if send.py program
#was run before. But we're not yet sure which program to run first. In such cases it's a good
# practice to repeat declaring the queue in both programs.
channel.queue_declare(queue='hello')def callback(ch, method, properties, body):print(" [x] Received %r" % body)channel.basic_consume(callback,queue='hello',no_ack=True)print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

二、Work Queues

1.示意图

在这种模式下,RabbitMQ会默认把p发的消息依次分发给各个消费者(c),跟负载均衡差不

2.代码

a.消息提供者

import pika
connection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))
channel = connection.channel()#声明queue
channel.queue_declare(queue='task_queue')#n RabbitMQ a message can never be sent directly to the queue, it always needs to go through an exchange.
import sysmessage = ' '.join(sys.argv[1:]) or "Hello World!"
channel.basic_publish(exchange='',routing_key='task_queue',body=message,properties=pika.BasicProperties(delivery_mode = 2, # make message persistent
                      ))
print(" [x] Sent %r" % message)
connection.close()

 

 b.消费者代码

import pika,timeconnection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))
channel = connection.channel()def callback(ch, method, properties, body):print(" [x] Received %r" % body)time.sleep(body.count(b'.'))print(" [x] Done")ch.basic_ack(delivery_tag = method.delivery_tag)channel.basic_consume(callback,queue='task_queue',)print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

   此时,先启动消息生产者,然后再分别启动3个消费者,通过生产者多发送几条消息,会发现,几条消息会被依次分配到各个消费者身上。  

  Doing a task can take a few seconds. You may wonder what happens if one of the consumers starts a long task and dies with it only partly done. With our current code once RabbitMQ delivers message to the customer it immediately removes it from memory. In this case, if you kill a worker we will lose the message it was just processing. We'll also lose all the messages that were dispatched to this particular worker but were not yet handled.

  But we don't want to lose any tasks. If a worker dies, we'd like the task to be delivered to another worker.

  In order to make sure a message is never lost, RabbitMQ supports message acknowledgments. An ack(nowledgement) is sent back from the consumer to tell RabbitMQ that a particular message had been received, processed and that RabbitMQ is free to delete it.

  If a consumer dies (its channel is closed, connection is closed, or TCP connection is lost) without sending an ack, RabbitMQ will understand that a message wasn't processed fully and will re-queue it. If there are other consumers online at the same time, it will then quickly redeliver it to another consumer. That way you can be sure that no message is lost, even if the workers occasionally die.

  There aren't any message timeouts; RabbitMQ will redeliver the message when the consumer dies. It's fine even if processing a message takes a very, very long time.

  Message acknowledgments are turned on by default. In previous examples we explicitly turned them off via the no_ack=True flag. It's time to remove this flag and send a proper acknowledgment from the worker, once we're done with a task.

def callback(ch, method, properties, body):print " [x] Received %r" % (body,)time.sleep( body.count('.') )print " [x] Done"ch.basic_ack(delivery_tag = method.delivery_tag)channel.basic_consume(callback,queue='hello')

   Using this code we can be sure that even if you kill a worker using CTRL+C while it was processing a message, nothing will be lost. Soon after the worker dies all unacknowledged messages will be redelivered

  三、消息持久化

   We have learned how to make sure that even if the consumer dies, the task isn't lost(by default, if wanna disable  use no_ack=True). But our tasks will still be lost if RabbitMQ server stops.

  When RabbitMQ quits or crashes it will forget the queues and messages unless you tell it not to. Two things are required to make sure that messages aren't lost: we need to mark both the queue and messages as durable.

  First, we need to make sure that RabbitMQ will never lose our queue. In order to do so, we need to declare it as durable:

channel.queue_declare(queue='hello', durable=True)

   This queue_declare change needs to be applied to both the producer and consumer code.

  At that point we're sure that the task_queue queue won't be lost even if RabbitMQ restarts. Now we need to mark our messages as persistent - by supplying a delivery_mode property with a value 2.

channel.basic_publish(exchange='',routing_key="task_queue",body=message,properties=pika.BasicProperties(delivery_mode = 2, # make message persistent))

 四、消息公布平台

   如果Rabbit只管按顺序把消息发到各个消费者身上,不考虑消费者负载的话,很可能出现,一个机器配置不高的消费者那里堆积了很多消息处理不完,同时配置高的消费者却一直很轻松。为解决此问题,可以在各个消费者端,配置perfetch=1,意思就是告诉RabbitMQ在我这个消费者当前消息还没处理完的时候就不要再给我发新消息了。

 1.示意图

channel.basic_qos(prefetch_count=1)

2.带消息持久化+公平分发的完整代码

 1.生产者端

#!/usr/bin/env python
import pika
import sysconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.queue_declare(queue='task_queue', durable=True)message = ' '.join(sys.argv[1:]) or "Hello World!"
channel.basic_publish(exchange='',routing_key='task_queue',body=message,properties=pika.BasicProperties(delivery_mode = 2, # make message persistent
                      ))
print(" [x] Sent %r" % message)
connection.close()

2.消费者 

#!/usr/bin/env python
import pika
import timeconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.queue_declare(queue='task_queue', durable=True)
print(' [*] Waiting for messages. To exit press CTRL+C')def callback(ch, method, properties, body):print(" [x] Received %r" % body)time.sleep(body.count(b'.'))print(" [x] Done")ch.basic_ack(delivery_tag = method.delivery_tag)channel.basic_qos(prefetch_count=1)
channel.basic_consume(callback,queue='task_queue')channel.start_consuming()

 五、Publish\Subscribe(消息发布\订阅) 

  之前的例子都基本都是1对1的消息发送和接收,即消息只能发送到指定的queue里,但有些时候你想让你的消息被所有的Queue收到,类似广播的效果,这时候就要用到exchange了,

  An exchange is a very simple thing. On one side it receives messages from producers and the other side it pushes them to queues. The exchange must know exactly what to do with a message it receives. Should it be appended to a particular queue? Should it be appended to many queues? Or should it get discarded. The rules for that are defined by the exchange type.

Exchange在定义的时候是有类型的,以决定到底是哪些Queue符合条件,可以接收消息

fanout: 所有bind到此exchange的queue都可以接收消息
direct: 通过routingKey和exchange决定的那个唯一的queue可以接收消息
topic:所有符合routingKey(此时可以是一个表达式)的routingKey所bind的queue可以接收消息
   表达式符号说明:#代表一个或多个字符,*代表任何字符
      例:#.a会匹配a.a,aa.a,aaa.a等
          *.a会匹配a.a,b.a,c.a等
     注:使用RoutingKey为#,Exchange Type为topic的时候相当于使用fanout 

headers: 通过headers 来决定把消息发给哪些queue

1.消息publisher

import pika
import sysconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.exchange_declare(exchange='logs',type='fanout')message = ' '.join(sys.argv[1:]) or "info: Hello World!"
channel.basic_publish(exchange='logs',routing_key='',body=message)
print(" [x] Sent %r" % message)
connection.close()

 

2. 消息subscriber

import pikaconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.exchange_declare(exchange='logs',type='fanout')result = channel.queue_declare(exclusive=True) #不指定queue名字,rabbit会随机分配一个名字,exclusive=True会在使用此queue的消费者断开后,自动将queue删除
queue_name = result.method.queuechannel.queue_bind(exchange='logs',queue=queue_name)print(' [*] Waiting for logs. To exit press CTRL+C')def callback(ch, method, properties, body):print(" [x] %r" % body)channel.basic_consume(callback,queue=queue_name,no_ack=True)channel.start_consuming()

六、有选择的接收消息(exchange type=direct) 

   RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。

 

1.publisher

import pika
import sysconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.exchange_declare(exchange='direct_logs',type='direct')severity = sys.argv[1] if len(sys.argv) > 1 else 'info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(exchange='direct_logs',routing_key=severity,body=message)
print(" [x] Sent %r:%r" % (severity, message))
connection.close()

 

 2.subscriber 

import pika
import sysconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.exchange_declare(exchange='direct_logs',type='direct')result = channel.queue_declare(exclusive=True)
queue_name = result.method.queueseverities = sys.argv[1:]
if not severities:sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])sys.exit(1)for severity in severities:channel.queue_bind(exchange='direct_logs',queue=queue_name,routing_key=severity)print(' [*] Waiting for logs. To exit press CTRL+C')def callback(ch, method, properties, body):print(" [x] %r:%r" % (method.routing_key, body))channel.basic_consume(callback,queue=queue_name,no_ack=True)channel.start_consuming()

 

 七、更细致的消息过滤

   Although using the direct exchange improved our system, it still has limitations - it can't do routing based on multiple criteria.

  In our logging system we might want to subscribe to not only logs based on severity, but also based on the source which emitted the log. You might know this concept from the syslog unix tool, which routes logs based on both severity (info/warn/crit...) and facility (auth/cron/kern...).

  That would give us a lot of flexibility - we may want to listen to just critical errors coming from 'cron' but also all logs from 'kern'.

Although using the direct exchange improved our system, it still has limitations - it can't do routing based on multiple criteria.

In our logging system we might want to subscribe to not only logs based on severity, but also based on the source which emitted the log. You might know this concept from the syslog unix tool, which routes logs based on both severity (info/warn/crit...) and facility (auth/cron/kern...).

That would give us a lot of flexibility - we may want to listen to just critical errors coming from 'cron' but also all logs from 'kern'.

 

1.publisher

import pika
import sysconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.exchange_declare(exchange='topic_logs',type='topic')routing_key = sys.argv[1] if len(sys.argv) > 1 else 'anonymous.info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(exchange='topic_logs',routing_key=routing_key,body=message)
print(" [x] Sent %r:%r" % (routing_key, message))
connection.close()

 

2.subscriber

import pika
import sysconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.exchange_declare(exchange='topic_logs',type='topic')result = channel.queue_declare(exclusive=True)
queue_name = result.method.queuebinding_keys = sys.argv[1:]
if not binding_keys:sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])sys.exit(1)for binding_key in binding_keys:channel.queue_bind(exchange='topic_logs',queue=queue_name,routing_key=binding_key)print(' [*] Waiting for logs. To exit press CTRL+C')def callback(ch, method, properties, body):print(" [x] %r:%r" % (method.routing_key, body))channel.basic_consume(callback,queue=queue_name,no_ack=True)channel.start_consuming()

 

 To receive all the logs run:

python receive_logs_topic.py "#"

To receive all logs from the facility "kern":

python receive_logs_topic.py "kern.*"

Or if you want to hear only about "critical" logs:

python receive_logs_topic.py "*.critical"

You can create multiple bindings:

python receive_logs_topic.py "kern.*" "*.critical"

And to emit a log with a routing key "kern.critical" type:

python emit_log_topic.py "kern.critical" "A critical kernel error"

八、Remote procedure call (RPC)

To illustrate how an RPC service could be used we're going to create a simple client class. It's going to expose a method named call which sends an RPC request and blocks until the answer is received:

fibonacci_rpc = FibonacciRpcClient()
result = fibonacci_rpc.call(4)
print("fib(4) is %r" % result)

  

1.RPC server

import pika
import time
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))channel = connection.channel()channel.queue_declare(queue='rpc_queue')def fib(n):if n == 0:return 0elif n == 1:return 1else:return fib(n-1) + fib(n-2)def on_request(ch, method, props, body):n = int(body)print(" [.] fib(%s)" % n)response = fib(n)ch.basic_publish(exchange='',routing_key=props.reply_to,properties=pika.BasicProperties(correlation_id = \props.correlation_id),body=str(response))ch.basic_ack(delivery_tag = method.delivery_tag)channel.basic_qos(prefetch_count=1)
channel.basic_consume(on_request, queue='rpc_queue')print(" [x] Awaiting RPC requests")
channel.start_consuming()

 

2.RPC client

import pika
import uuidclass FibonacciRpcClient(object):def __init__(self):self.connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))self.channel = self.connection.channel()result = self.channel.queue_declare(exclusive=True)self.callback_queue = result.method.queueself.channel.basic_consume(self.on_response, no_ack=True,queue=self.callback_queue)def on_response(self, ch, method, props, body):if self.corr_id == props.correlation_id:self.response = bodydef call(self, n):self.response = Noneself.corr_id = str(uuid.uuid4())self.channel.basic_publish(exchange='',routing_key='rpc_queue',properties=pika.BasicProperties(reply_to = self.callback_queue,correlation_id = self.corr_id,),body=str(n))while self.response is None:self.connection.process_data_events()return int(self.response)fibonacci_rpc = FibonacciRpcClient()print(" [x] Requesting fib(30)")
response = fibonacci_rpc.call(30)
print(" [.] Got %r" % response)

 

九、Memcached & Redis使用 

http://www.cnblogs.com/wupeiqi/articles/5132791.html  

  

 

转载于:https://www.cnblogs.com/youngcheung/p/5972517.html

这篇关于Python之路第一课Day11--随堂笔记(异步IO\数据库\队列\缓存之二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/227277

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1180(广搜+优先队列)

此题要求最少到达目标点T的最短时间,所以我选择了广度优先搜索,并且要用到优先队列。 另外此题注意点较多,比如说可以在某个点停留,我wa了好多两次,就是因为忽略了这一点,然后参考了大神的思想,然后经过反复修改才AC的 这是我的代码 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<

MySQL数据库宕机,启动不起来,教你一招搞定!

作者介绍:老苏,10余年DBA工作运维经验,擅长Oracle、MySQL、PG、Mongodb数据库运维(如安装迁移,性能优化、故障应急处理等)公众号:老苏畅谈运维欢迎关注本人公众号,更多精彩与您分享。 MySQL数据库宕机,数据页损坏问题,启动不起来,该如何排查和解决,本文将为你说明具体的排查过程。 查看MySQL error日志 查看 MySQL error日志,排查哪个表(表空间

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

poj 3190 优先队列+贪心

题意: 有n头牛,分别给他们挤奶的时间。 然后每头牛挤奶的时候都要在一个stall里面,并且每个stall每次只能占用一头牛。 问最少需要多少个stall,并输出每头牛所在的stall。 e.g 样例: INPUT: 51 102 43 65 84 7 OUTPUT: 412324 HINT: Explanation of the s