Python之路第一课Day11--随堂笔记(异步IO\数据库\队列\缓存之二)

本文主要是介绍Python之路第一课Day11--随堂笔记(异步IO\数据库\队列\缓存之二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、RabbitMQ队列  

1.安装:

a.官网:

      安装 http://www.rabbitmq.com/install-standalone-mac.html

b.安装python rabbitMQ module 

pip install pika
or
easy_install pika
or
源码
https://pypi.python.org/pypi/pika

2.实现最简单的队列通信

a.示意图

3.代码:

a.send端

#!/usr/bin/env python
import pikaconnection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))
channel = connection.channel()#声明queue
channel.queue_declare(queue='hello')#n RabbitMQ a message can never be sent directly to the queue, it always needs to go through an exchange.
channel.basic_publish(exchange='',routing_key='hello',body='Hello World!')
print(" [x] Sent 'Hello World!'")
connection.close()

b.receive

#!/usr/bin/env python
# -*- conding:utf-8 -*-
__Author__ = "YoungCheung"
import pikaconnection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))
channel = connection.channel()#You may ask why we declare the queue again ‒ we have already declared it in our previous code.
# We could avoid that if we were sure that the queue already exists. For example if send.py program
#was run before. But we're not yet sure which program to run first. In such cases it's a good
# practice to repeat declaring the queue in both programs.
channel.queue_declare(queue='hello')def callback(ch, method, properties, body):print(" [x] Received %r" % body)channel.basic_consume(callback,queue='hello',no_ack=True)print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

二、Work Queues

1.示意图

在这种模式下,RabbitMQ会默认把p发的消息依次分发给各个消费者(c),跟负载均衡差不

2.代码

a.消息提供者

import pika
connection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))
channel = connection.channel()#声明queue
channel.queue_declare(queue='task_queue')#n RabbitMQ a message can never be sent directly to the queue, it always needs to go through an exchange.
import sysmessage = ' '.join(sys.argv[1:]) or "Hello World!"
channel.basic_publish(exchange='',routing_key='task_queue',body=message,properties=pika.BasicProperties(delivery_mode = 2, # make message persistent
                      ))
print(" [x] Sent %r" % message)
connection.close()

 

 b.消费者代码

import pika,timeconnection = pika.BlockingConnection(pika.ConnectionParameters('localhost'))
channel = connection.channel()def callback(ch, method, properties, body):print(" [x] Received %r" % body)time.sleep(body.count(b'.'))print(" [x] Done")ch.basic_ack(delivery_tag = method.delivery_tag)channel.basic_consume(callback,queue='task_queue',)print(' [*] Waiting for messages. To exit press CTRL+C')
channel.start_consuming()

   此时,先启动消息生产者,然后再分别启动3个消费者,通过生产者多发送几条消息,会发现,几条消息会被依次分配到各个消费者身上。  

  Doing a task can take a few seconds. You may wonder what happens if one of the consumers starts a long task and dies with it only partly done. With our current code once RabbitMQ delivers message to the customer it immediately removes it from memory. In this case, if you kill a worker we will lose the message it was just processing. We'll also lose all the messages that were dispatched to this particular worker but were not yet handled.

  But we don't want to lose any tasks. If a worker dies, we'd like the task to be delivered to another worker.

  In order to make sure a message is never lost, RabbitMQ supports message acknowledgments. An ack(nowledgement) is sent back from the consumer to tell RabbitMQ that a particular message had been received, processed and that RabbitMQ is free to delete it.

  If a consumer dies (its channel is closed, connection is closed, or TCP connection is lost) without sending an ack, RabbitMQ will understand that a message wasn't processed fully and will re-queue it. If there are other consumers online at the same time, it will then quickly redeliver it to another consumer. That way you can be sure that no message is lost, even if the workers occasionally die.

  There aren't any message timeouts; RabbitMQ will redeliver the message when the consumer dies. It's fine even if processing a message takes a very, very long time.

  Message acknowledgments are turned on by default. In previous examples we explicitly turned them off via the no_ack=True flag. It's time to remove this flag and send a proper acknowledgment from the worker, once we're done with a task.

def callback(ch, method, properties, body):print " [x] Received %r" % (body,)time.sleep( body.count('.') )print " [x] Done"ch.basic_ack(delivery_tag = method.delivery_tag)channel.basic_consume(callback,queue='hello')

   Using this code we can be sure that even if you kill a worker using CTRL+C while it was processing a message, nothing will be lost. Soon after the worker dies all unacknowledged messages will be redelivered

  三、消息持久化

   We have learned how to make sure that even if the consumer dies, the task isn't lost(by default, if wanna disable  use no_ack=True). But our tasks will still be lost if RabbitMQ server stops.

  When RabbitMQ quits or crashes it will forget the queues and messages unless you tell it not to. Two things are required to make sure that messages aren't lost: we need to mark both the queue and messages as durable.

  First, we need to make sure that RabbitMQ will never lose our queue. In order to do so, we need to declare it as durable:

channel.queue_declare(queue='hello', durable=True)

   This queue_declare change needs to be applied to both the producer and consumer code.

  At that point we're sure that the task_queue queue won't be lost even if RabbitMQ restarts. Now we need to mark our messages as persistent - by supplying a delivery_mode property with a value 2.

channel.basic_publish(exchange='',routing_key="task_queue",body=message,properties=pika.BasicProperties(delivery_mode = 2, # make message persistent))

 四、消息公布平台

   如果Rabbit只管按顺序把消息发到各个消费者身上,不考虑消费者负载的话,很可能出现,一个机器配置不高的消费者那里堆积了很多消息处理不完,同时配置高的消费者却一直很轻松。为解决此问题,可以在各个消费者端,配置perfetch=1,意思就是告诉RabbitMQ在我这个消费者当前消息还没处理完的时候就不要再给我发新消息了。

 1.示意图

channel.basic_qos(prefetch_count=1)

2.带消息持久化+公平分发的完整代码

 1.生产者端

#!/usr/bin/env python
import pika
import sysconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.queue_declare(queue='task_queue', durable=True)message = ' '.join(sys.argv[1:]) or "Hello World!"
channel.basic_publish(exchange='',routing_key='task_queue',body=message,properties=pika.BasicProperties(delivery_mode = 2, # make message persistent
                      ))
print(" [x] Sent %r" % message)
connection.close()

2.消费者 

#!/usr/bin/env python
import pika
import timeconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.queue_declare(queue='task_queue', durable=True)
print(' [*] Waiting for messages. To exit press CTRL+C')def callback(ch, method, properties, body):print(" [x] Received %r" % body)time.sleep(body.count(b'.'))print(" [x] Done")ch.basic_ack(delivery_tag = method.delivery_tag)channel.basic_qos(prefetch_count=1)
channel.basic_consume(callback,queue='task_queue')channel.start_consuming()

 五、Publish\Subscribe(消息发布\订阅) 

  之前的例子都基本都是1对1的消息发送和接收,即消息只能发送到指定的queue里,但有些时候你想让你的消息被所有的Queue收到,类似广播的效果,这时候就要用到exchange了,

  An exchange is a very simple thing. On one side it receives messages from producers and the other side it pushes them to queues. The exchange must know exactly what to do with a message it receives. Should it be appended to a particular queue? Should it be appended to many queues? Or should it get discarded. The rules for that are defined by the exchange type.

Exchange在定义的时候是有类型的,以决定到底是哪些Queue符合条件,可以接收消息

fanout: 所有bind到此exchange的queue都可以接收消息
direct: 通过routingKey和exchange决定的那个唯一的queue可以接收消息
topic:所有符合routingKey(此时可以是一个表达式)的routingKey所bind的queue可以接收消息
   表达式符号说明:#代表一个或多个字符,*代表任何字符
      例:#.a会匹配a.a,aa.a,aaa.a等
          *.a会匹配a.a,b.a,c.a等
     注:使用RoutingKey为#,Exchange Type为topic的时候相当于使用fanout 

headers: 通过headers 来决定把消息发给哪些queue

1.消息publisher

import pika
import sysconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.exchange_declare(exchange='logs',type='fanout')message = ' '.join(sys.argv[1:]) or "info: Hello World!"
channel.basic_publish(exchange='logs',routing_key='',body=message)
print(" [x] Sent %r" % message)
connection.close()

 

2. 消息subscriber

import pikaconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.exchange_declare(exchange='logs',type='fanout')result = channel.queue_declare(exclusive=True) #不指定queue名字,rabbit会随机分配一个名字,exclusive=True会在使用此queue的消费者断开后,自动将queue删除
queue_name = result.method.queuechannel.queue_bind(exchange='logs',queue=queue_name)print(' [*] Waiting for logs. To exit press CTRL+C')def callback(ch, method, properties, body):print(" [x] %r" % body)channel.basic_consume(callback,queue=queue_name,no_ack=True)channel.start_consuming()

六、有选择的接收消息(exchange type=direct) 

   RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。

 

1.publisher

import pika
import sysconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.exchange_declare(exchange='direct_logs',type='direct')severity = sys.argv[1] if len(sys.argv) > 1 else 'info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(exchange='direct_logs',routing_key=severity,body=message)
print(" [x] Sent %r:%r" % (severity, message))
connection.close()

 

 2.subscriber 

import pika
import sysconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.exchange_declare(exchange='direct_logs',type='direct')result = channel.queue_declare(exclusive=True)
queue_name = result.method.queueseverities = sys.argv[1:]
if not severities:sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0])sys.exit(1)for severity in severities:channel.queue_bind(exchange='direct_logs',queue=queue_name,routing_key=severity)print(' [*] Waiting for logs. To exit press CTRL+C')def callback(ch, method, properties, body):print(" [x] %r:%r" % (method.routing_key, body))channel.basic_consume(callback,queue=queue_name,no_ack=True)channel.start_consuming()

 

 七、更细致的消息过滤

   Although using the direct exchange improved our system, it still has limitations - it can't do routing based on multiple criteria.

  In our logging system we might want to subscribe to not only logs based on severity, but also based on the source which emitted the log. You might know this concept from the syslog unix tool, which routes logs based on both severity (info/warn/crit...) and facility (auth/cron/kern...).

  That would give us a lot of flexibility - we may want to listen to just critical errors coming from 'cron' but also all logs from 'kern'.

Although using the direct exchange improved our system, it still has limitations - it can't do routing based on multiple criteria.

In our logging system we might want to subscribe to not only logs based on severity, but also based on the source which emitted the log. You might know this concept from the syslog unix tool, which routes logs based on both severity (info/warn/crit...) and facility (auth/cron/kern...).

That would give us a lot of flexibility - we may want to listen to just critical errors coming from 'cron' but also all logs from 'kern'.

 

1.publisher

import pika
import sysconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.exchange_declare(exchange='topic_logs',type='topic')routing_key = sys.argv[1] if len(sys.argv) > 1 else 'anonymous.info'
message = ' '.join(sys.argv[2:]) or 'Hello World!'
channel.basic_publish(exchange='topic_logs',routing_key=routing_key,body=message)
print(" [x] Sent %r:%r" % (routing_key, message))
connection.close()

 

2.subscriber

import pika
import sysconnection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))
channel = connection.channel()channel.exchange_declare(exchange='topic_logs',type='topic')result = channel.queue_declare(exclusive=True)
queue_name = result.method.queuebinding_keys = sys.argv[1:]
if not binding_keys:sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0])sys.exit(1)for binding_key in binding_keys:channel.queue_bind(exchange='topic_logs',queue=queue_name,routing_key=binding_key)print(' [*] Waiting for logs. To exit press CTRL+C')def callback(ch, method, properties, body):print(" [x] %r:%r" % (method.routing_key, body))channel.basic_consume(callback,queue=queue_name,no_ack=True)channel.start_consuming()

 

 To receive all the logs run:

python receive_logs_topic.py "#"

To receive all logs from the facility "kern":

python receive_logs_topic.py "kern.*"

Or if you want to hear only about "critical" logs:

python receive_logs_topic.py "*.critical"

You can create multiple bindings:

python receive_logs_topic.py "kern.*" "*.critical"

And to emit a log with a routing key "kern.critical" type:

python emit_log_topic.py "kern.critical" "A critical kernel error"

八、Remote procedure call (RPC)

To illustrate how an RPC service could be used we're going to create a simple client class. It's going to expose a method named call which sends an RPC request and blocks until the answer is received:

fibonacci_rpc = FibonacciRpcClient()
result = fibonacci_rpc.call(4)
print("fib(4) is %r" % result)

  

1.RPC server

import pika
import time
connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))channel = connection.channel()channel.queue_declare(queue='rpc_queue')def fib(n):if n == 0:return 0elif n == 1:return 1else:return fib(n-1) + fib(n-2)def on_request(ch, method, props, body):n = int(body)print(" [.] fib(%s)" % n)response = fib(n)ch.basic_publish(exchange='',routing_key=props.reply_to,properties=pika.BasicProperties(correlation_id = \props.correlation_id),body=str(response))ch.basic_ack(delivery_tag = method.delivery_tag)channel.basic_qos(prefetch_count=1)
channel.basic_consume(on_request, queue='rpc_queue')print(" [x] Awaiting RPC requests")
channel.start_consuming()

 

2.RPC client

import pika
import uuidclass FibonacciRpcClient(object):def __init__(self):self.connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost'))self.channel = self.connection.channel()result = self.channel.queue_declare(exclusive=True)self.callback_queue = result.method.queueself.channel.basic_consume(self.on_response, no_ack=True,queue=self.callback_queue)def on_response(self, ch, method, props, body):if self.corr_id == props.correlation_id:self.response = bodydef call(self, n):self.response = Noneself.corr_id = str(uuid.uuid4())self.channel.basic_publish(exchange='',routing_key='rpc_queue',properties=pika.BasicProperties(reply_to = self.callback_queue,correlation_id = self.corr_id,),body=str(n))while self.response is None:self.connection.process_data_events()return int(self.response)fibonacci_rpc = FibonacciRpcClient()print(" [x] Requesting fib(30)")
response = fibonacci_rpc.call(30)
print(" [.] Got %r" % response)

 

九、Memcached & Redis使用 

http://www.cnblogs.com/wupeiqi/articles/5132791.html  

  

 

转载于:https://www.cnblogs.com/youngcheung/p/5972517.html

这篇关于Python之路第一课Day11--随堂笔记(异步IO\数据库\队列\缓存之二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/227277

相关文章

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v