Python分析最近大火的网剧《隐秘的角落》,网友评论真精彩!

2023-10-17 16:19

本文主要是介绍Python分析最近大火的网剧《隐秘的角落》,网友评论真精彩!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途

估计最近很火的连续剧《隐秘的角落》大家趁着端午假期都看过了吧?小编也跟着潮流,一口气把12集的连续剧全部看完了。看过的人肯定对朋友圈里有人发的“一起去爬山”、“小白船”、“还有机会吗”的意思心照不宣。没看过的,如果已为人父人母的,强烈要求看一下。

剧很精彩,但追剧界有句俗话说得好:“弹幕往往比剧更精彩”,为了让精彩延续下去,咱们来看看该剧弹幕的部分。电视剧是在爱奇艺独播,因此从爱奇艺上爬虫最为合适。

爬取弹幕

爱奇艺的弹幕数据是以 .z 形式的压缩文件存在的,先获取 tvid 列表,再根据 tvid 获取弹幕的压缩文件,最后对其进行解压及存储,大概就是这样一个过程。

在学习过程中有什么不懂得可以加我的
python学习qun,855408893
群里有不错的学习视频教程、开发工具与电子书籍。  
与你分享python企业当下人才需求及怎么从零基础学习好python,和学习什么内容
def get_data(tv_name,tv_id):url = https://cmts.iqiyi.com/bullet/{}/{}/{}_300_{}.zdatas = pd.DataFrame(columns=[uid,contentsId,contents,likeCount]) for i in range(1,20):myUrl = url.format(tv_id[-4:-2],tv_id[-2:],tv_id,i) print(myUrl)res = requests.get(myUrl) if res.status_code == 200:btArr = bytearray(res.content)xml=zlib.decompress(btArr).decode(utf-8)bs = BeautifulSoup(xml,"xml")data = pd.DataFrame(columns=[uid,contentsId,contents,likeCount])data[uid] = [i.text for i in bs.findAll(uid)]data[contentsId] = [i.text for i in bs.findAll(contentId)]data[contents] = [i.text for i in bs.findAll(content)]data[likeCount] = [i.text for i in bs.findAll(likeCount)] else: break datas = pd.concat([datas,data],ignore_index = True)datas[tv_name]= str(tv_name) return datas

共爬取得到201865 条《隐秘的角落》弹幕数据。

弹幕发射器

按照用户id分组并对弹幕id计数,可以得到每位用户的累计发送弹幕数。

#累计发送弹幕数的用户
danmu_counts = df.groupby(uid)[contentsId].count().sort_values(ascending = False).reset_index()
danmu_counts.columns = [用户id,累计发送弹幕数]
danmu_counts.head()

累计发送弹幕数用户top5

第一名竟然发送了2561条弹幕,这只是一部12集的网剧啊。

难道他/她是水军?每条都发的差不多?

df_top1 = df[df[uid] == 1810351987].sort_values(by="likeCount",ascending = False).reset_index()
df_top1.head(10)

然而并不是,每一条弹幕都是这位观众的有感而发,可能他/她只是在发弹幕的同时顺便看看剧吧。

这位“弹幕发射器”朋友,在每一集的弹幕量又是如何呢?

分集&平均弹幕量

是不是通过上图可以侧面说明个别剧集的戏剧冲突更大,更能引发观众吐槽呢?

“弹幕发射器”同志,11、12集请加大输出!

这些弹幕大家都认同

抛开“弹幕发射器”同志,我们继续探究一下分集的弹幕。

看看每一集当中,哪些弹幕大家都很认同(赞)?

df_like = df[df.groupby([tv_name])[likeCount].rank(method="first", ascending=False)==1].reset_index()[[tv_name,contents,likeCount]]
df_like.columns = [剧集,弹幕,赞]
df_like

每一集中点赞最多的弹幕

每一集的最佳弹幕都是当集剧情的浓缩,这些就是观众们票选出来的梗(吐槽)啊!

应该不算剧透吧,不算吧,不算吧

实在不行我请你去爬山也可

P

总结

除了剧本、音乐等,“老戏骨”和“小演员”们的演技也获得了网友的一致好评。

这部剧虽然短短12集,但故事线不仅仅在一两个人身上。每个人都有自己背后的故事,又因为种种巧合串联在一起,引发观众的持续性讨论。

我们统计一下演员们在弹幕中的出现次数,看看剧中的哪些角色大家提及最多

对Python感兴趣或者是正在学习的小伙伴,可以加入我们的Python学习扣qun:855408893 ,从0基础的python脚本到web开发、爬虫、django、数据挖掘数据分析等,0基础到项目实战的资料都有整理。送给每一位python的小伙伴!每晚分享一些学习的方法和需要注意的小细节,学习路线规划,利用编程赚外快。点击加入我们的 python学习圈

这篇关于Python分析最近大火的网剧《隐秘的角落》,网友评论真精彩!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/226528

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

poj1330(LCA最近公共祖先)

题意:求最近公共祖先 思路:之前学习了树链剖分,然后我就用树链剖分的一小部分知识就可以解这个题目了,记录每个结点的fa和depth。然后查找时,每次将depth大的结点往上走直到x = y。 代码如下: #include<iostream>#include<algorithm>#include<stdio.h>#include<math.h>#include<cstring>

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip