Reasoning with Language Model Prompting: A Survey

2023-10-17 13:04

本文主要是介绍Reasoning with Language Model Prompting: A Survey,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文是LLM系列的文章,针对《Reasoning with Language Model Prompting: A Survey》的翻译。

语言模型提示推理:综述

  • 摘要
  • 1 引言
  • 2 前言
  • 3 方法分类
  • 4 比较和讨论
  • 5 基准与资源
  • 6 未来方向
  • 7 结论与视角

摘要

推理作为解决复杂问题的基本能力,可以为各种现实应用提供后端支持,如医疗诊断、协商等。本文对语言模型提示推理的前沿研究进行了综述。我们以比较和总结的方式介绍研究工作,并提供系统的资源帮助初学者。我们还讨论了这种推理能力出现的潜在原因,并强调了未来的研究方向。

1 引言

2 前言

3 方法分类

4 比较和讨论

5 基准与资源

6 未来方向

7 结论与视角

本文对基于语言模型提示的推理进行了综述,包括全面的比较和几个研究方向。在未来,我们设想在NLP和其他领域的方法之间有一个更有效的协同作用,并希望复杂和高效的LM提示模型将越来越多地有助于提高推理性能。

这篇关于Reasoning with Language Model Prompting: A Survey的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/225594

相关文章

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey https://arxiv.org/abs/2406.04244 大规模语言模型的基准数据污染:一项综述 文章目录 大规模语言模型的基准数据污染:一项综述摘要1 引言 摘要 大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快

论文翻译:ICLR-2024 PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS

PROVING TEST SET CONTAMINATION IN BLACK BOX LANGUAGE MODELS https://openreview.net/forum?id=KS8mIvetg2 验证测试集污染在黑盒语言模型中 文章目录 验证测试集污染在黑盒语言模型中摘要1 引言 摘要 大型语言模型是在大量互联网数据上训练的,这引发了人们的担忧和猜测,即它们可能已

MVC(Model-View-Controller)和MVVM(Model-View-ViewModel)

1、MVC MVC(Model-View-Controller) 是一种常用的架构模式,用于分离应用程序的逻辑、数据和展示。它通过三个核心组件(模型、视图和控制器)将应用程序的业务逻辑与用户界面隔离,促进代码的可维护性、可扩展性和模块化。在 MVC 模式中,各组件可以与多种设计模式结合使用,以增强灵活性和可维护性。以下是 MVC 各组件与常见设计模式的关系和作用: 1. Model(模型)

UML- 统一建模语言(Unified Modeling Language)创建项目的序列图及类图

陈科肇 ============= 1.主要模型 在UML系统开发中有三个主要的模型: 功能模型:从用户的角度展示系统的功能,包括用例图。 对象模型:采用对象、属性、操作、关联等概念展示系统的结构和基础,包括类图、对象图、包图。 动态模型:展现系统的内部行为。 包括序列图、活动图、状态图。 因为要创建个人空间项目并不是一个很大的项目,我这里只须关注两种图的创建就可以了,而在开始创建UML图

速通GPT-3:Language Models are Few-Shot Learners全文解读

文章目录 论文实验总览1. 任务设置与测试策略2. 任务类别3. 关键实验结果4. 数据污染与实验局限性5. 总结与贡献 Abstract1. 概括2. 具体分析3. 摘要全文翻译4. 为什么不需要梯度更新或微调⭐ Introduction1. 概括2. 具体分析3. 进一步分析 Approach1. 概括2. 具体分析3. 进一步分析 Results1. 概括2. 具体分析2.1 语言模型

A Comprehensive Survey on Graph Neural Networks笔记

一、摘要-Abstract 1、传统的深度学习模型主要处理欧几里得数据(如图像、文本),而图神经网络的出现和发展是为了有效处理和学习非欧几里得域(即图结构数据)的信息。 2、将GNN划分为四类:recurrent GNNs(RecGNN), convolutional GNNs,(GCN), graph autoencoders(GAE), and spatial–temporal GNNs(S

diffusion model 合集

diffusion model 整理 DDPM: 前向一步到位,从数据集里的图片加噪声,根据随机到的 t t t 决定混合的比例,反向要慢慢迭代,DDPM是用了1000步迭代。模型的输入是带噪声图和 t,t 先生成embedding后,用通道和的方式加到每一层中间去: 训练过程是对每个样本分配一个随机的t,采样一个高斯噪声 ϵ \epsilon ϵ,然后根据 t 对图片和噪声进行混合,将加噪

[论文笔记]Making Large Language Models A Better Foundation For Dense Retrieval

引言 今天带来北京智源研究院(BAAI)团队带来的一篇关于如何微调LLM变成密集检索器的论文笔记——Making Large Language Models A Better Foundation For Dense Retrieval。 为了简单,下文中以翻译的口吻记录,比如替换"作者"为"我们"。 密集检索需要学习具有区分性的文本嵌入,以表示查询和文档之间的语义关系。考虑到大语言模

Segment Anything Model(SAM)中的Adapter是什么?

在META团队发布的Segment Anything Model (SAM) 中,Adapter 是一种用于提升模型在特定任务或领域上的性能的机制。具体来说,SAM 是一个通用的分割模型,能够处理多种不同类型的图像分割任务,而 Adapter 的引入是为了更好地让模型适应不同的任务需求。 Adapter 的主要功能是: 模块化设计:Adapter 是一种小规模的、可插拔的网络模块,可以在不改

Vue学习:v-model绑定文本框、单选按钮、下拉菜单、复选框等

v-model指令可以在组件上使用以实现双向绑定,之前学习过v-model绑定文本框和下拉菜单,今天把表单的几个控件单选按钮radio、复选框checkbox、多行文本框textarea都试着绑定了一下。 一、单行文本框和多行文本框 <p>1.单行文本框</p>用户名:<input type="text" v-model="inputMessage"><p>您的用户名是:{{inputMe