IPV6 ND协议--源码解析【根源分析】

2023-10-17 05:44

本文主要是介绍IPV6 ND协议--源码解析【根源分析】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ND协议介绍

ND介绍请阅读上一篇文章:IPv6知识 - ND协议【一文通透】
11.NDP协议分析与实践_router solicitation报文中不携带source link-layer address-CSDN博客

ND协议定义了5种ICMPv6报文类型,如下表所示:

NS/NA报文主要用于地址解析
RS/RA报文主要用于无状态地址自动配置
Redirect报文用于路由器重定向。

源码存在于头文件

#include<netinet/ip6.h>
#include<netinet/icmp6.h>
#include<netinet/ether.h>

NS包解析

ICMPv6邻居请求(Neighbor Solicitation)消息

其中各字段的含义如下:
1)Target Address:待解析的IPv6地址,16types。Target Address不能是组播地址,可以是链路本地地址、站点本地地址和全球单播地址。
2)Options:地址解析中只使用了链路层地址选项(Link-Layer Address Option),是发送NS报文节点的链路层地址。
Source/Target Link-Layer Address(链路层地址选项)的格式如下图所示:

其中各字段含义如下:
1)Type:选项类型,在链路层地址选项中包括如下两种:

  • Type=1,表明链路层地址为Source Link-Layer Address(源链路层地址),在NS,RS,Redirect报文中使用。
  • Type=2,表明链路层地址为Target Link-Layer Address(目标链路层地址),在NA,Redirect报文中使用。

2)Length:选项长度,以8bytes为单位。
3)Link-Layer Address:链路层地址。长度可变,对于以太网为6bytes。

邻居请求报文NS(Neighbor Solicitation)报文:Type字段值为135,Code字段值为0,在地址解析中的作用类似于IPv4中的ARP请求报文。用来获取邻居的链路层地址,验证邻居是否可达,进行重复地址检测等。

image.png
image.png

NA包解析

ICMPv6邻居通告(Neighbor Adivertisment)消息


其中各字段的含义如下:
1)Target Address:待解析的IPv6地址,16types。Target Address不能是组播地址,可以是链路本地地址、站点本地地址和全球单播地址。被公告的 IP 地址,不能是多播地址
2)R (Router flag) : 发送者是否为 Router; 当 Router 不再扮演 Router 角色时,将该值设置为 0,Hosts 会将该 Router 从默认路由表中删除
3)S (Solicited flag) : 是否为 NS 响应消息
4)O (Override flag) : 通知其他节点 link 地址变化
5)Options: 地址解析中只使用了链路层地址选项(Link-Layer Address Option),是发送NS报文节点的链路层地址。链路层地址选项的格式如下图所示:
其中各字段含义如下:
1)Type:选项类型,在链路层地址选项中包括如下两种:

  • Type=1,表明链路层地址为Source Link-Layer Address(源链路层地址),在NS,RS,Redirect报文中使用。
  • Type=2,表明链路层地址为Target Link-Layer Address(目标链路层地址),在NA,Redirect报文中使用。

2)Length:选项长度,以8bytes为单位。
3)Link-Layer Address:链路层地址。长度可变,对于以太网为6bytes。

邻居通告报文NA(Neighbor Adivertisment)报文:Type字段值为136,Code字段值为0,在地址解析中的作用类似于IPv4中的ARP应答报文。用来对NS消息进行响应。另外,当节点在链路层变化的时候主动发出NA消息,告知邻居本节点的变化。

image.png
image.png

========================

RS包解析

ICMPv6路由器请求(Router Solicitation)消息

其中字段含义如下:
Options(选项)字段:只能是源链路层地址选项,表明该报文发送者的链路层地址,不过如果IPv6报头的源地址为未指定地址,则不能包括该选项。
ICMPv6路由器请求(Router Solicitation)消息Type字段值为133,节点启动后,通过RS消息向路由器发出请求,请求前缀和其他配置信息,用于节点的自动配置。

RS包(路由请求):结构体nd_router_solicit解析
image.png
image.png
image.png

RA包解析

ICMPv6路由器通告(Router Advertisement)消息

  • 路由器周期性地发布 RA 消息,包含 on-link/off-link 的 prefix、hop-limit 和 link-MTU 等



其中字段含义如下:

  • 类型 : 消息类型, RA 固定为 134
  • 代码 : 发送者固定为 0,接收者忽略
  • 校验和 : 用于校验 ICMPv6 和部分 IPv6 首部完整性
  • 跳数限制 : 主机跳数限制,0 表示路由器没有指定,需主机设置
  • M (Managed Address Configuration) :
    • M=1 : 表示目标机使用 DHCPv6 获取 IPv6 地址
    • M=0 : 表示目标机使用无状态自动配置SLAAC,根据RA 消息获得的 IPv6 前缀构造 IPv6 地址
  • O (Other Configuration) :
    • O=1 : 目标机使用 DHCPv6 获取其他配置信息(不包括 IPv6 地址),比如 DNS 等
    • O=0 : 目标机不使用 DHCPv6 获取其他配置信息(不包括 IPv6 地址),比如手工配置 DNS 等
  • 默认路由器有效期: 表示该路由器能当默认路由器的时间,0 表示不是默认路由,单位为秒
  • 节点可达有效期 : 表示某个节点被确认可达之后的有效时间,0 表示路由器没有指定,需主机设置,单位毫秒
  • 重传间隔时间 : 重新发送 NS 消息间隔时间,单位毫秒



Options选项字段中个选项的含义如下:
1)源链路层地址选项:路由器发送RA报文的接口的链路层地址。
2)MTU选项:包含了在链路上运行的链路层协议所能支持的MTU最大值,如果 MTU 可变, router 会发送该选项。
3)前缀信息选项(Prefix Information Option):用于地址自动配置的前缀信息,可包含多个。前缀信息选项在RFC2461中定义,用于表示地址前缀和有关地址自动配置的信息,值用于RA报文中;在其他的消息中,此选项应该被忽略。自动配置地址时,指明前缀是否为 on-link 和是否可用来自动配置 IPv6 地址
其格式如下图所示:


4)路由信息选项(Route Information Option):用于主机生产默认路由。通知主机添加指定的路由到路由表。
路由信息选项在RFC4191中定义,取代了原前缀信息选项的功能。接收RA报文的主机将选项中的信息添加到自己的路由表中,以便在发送报文时做出更好地转发决定,其个数如下图所示:

其中各字段含义如下所示:

5)通告间隔 : Mobile IPv6 extension,通知主机每隔多久 home agent 会定期发送 NA 消息
6)Home Agent Info : Mobile IPv6 extension,每个 Home agent 用来公告自己的优先顺序及有效期

RA包:nd_router_advert 解析

image.png
image.png
image.png

选项Options 解析

Options选项字段中个选项的含义如下:
1)源链路层地址选项:路由器发送RA报文的接口的链路层地址。
2)MTU选项:包含了在链路上运行的链路层协议所能支持的MTU最大值。
image.png
image.png

前缀信息选项 解析

(3)前缀信息选项(Prefix Information Option):用于地址自动配置的前缀信息,可包含多个。前缀信息选项在RFC2461中定义,用于表示地址前缀和有关地址自动配置的信息,值用于RA报文中;在其他的消息中,此选项应该被忽略。自动配置地址时,指明前缀是否为 on-link 和是否可用来自动配置 IPv6 地址
其格式如下图所示:


image.png
image.png
image.png

========================

ND重定向解析

当路由器发现更好的报文转发路径(next-hop)时候,会用重定向报文告诉主机

类型 : 消息类型, 固定为 137
代码 : 发送者固定为 0,接收者忽略
**校验和 **: 用于校验 ICMPv6 和部分 IPv6 首部完整性
**目标地址 **: 重定向后的 Router 地址
**目的地址 **: 原始封包的目的位址
选项 :

  • 目标链路层地址选项 : 目标的链路层地址,如果知道的话
  • 重定向头部选项 : 引起 Router 发送 Redirect message 的原始封包內容或部分內容(重定向消息大小不能超过1280 bytes)
    image.pngimage.png

实战演练—NDP 编程

地址解析

  • 地址解析在三层完成,不同的二层介质可以采用相同的地址解析协议
  • 可以使用三层的安全机制(例如 IPsec)避免地址解析攻击
  • 使用组播方式发送请求报文,减少二层网络的性能压力
  • NS/NA 消息的目的 IPv6 地址是个特定的组播地址,跳数限制为 255,保证不会跑远(不能转发或者路由)

ndp.h

#ifndef __ndp_h_
#define __ndp_h_/* 参考 linux /usr/include/netinet/icmp6.h */
#define ND_ROUTER_SOLICIT           133
#define ND_ROUTER_ADVERT            134
#define ND_NEIGHBOR_SOLICIT         135
#define ND_NEIGHBOR_ADVERT          136
#define ND_REDIRECT                 137#define ND_OPT_SOURCE_LINKADDR      1
#define ND_OPT_TARGET_LINKADDR      2
#define ND_OPT_PREFIX_INFORMATION   3
#define ND_OPT_REDIRECTED_HEADER    4
#define ND_OPT_MTU                  5
#define ND_OPT_RTR_ADV_INTERVAL     7
#define ND_OPT_HOME_AGENT_INFO      8struct icmp6_hdr {uint8_t  icmp6_type;   /* type field */uint8_t  icmp6_code;   /* code field */uint16_t icmp6_cksum;  /* checksum field */union {   uint32_t icmp6_un_data32[1]; /* type-specific field */uint16_t icmp6_un_data16[2]; /* type-specific field */uint8_t  icmp6_un_data8[4];  /* type-specific field */} icmp6_dataun;
};  struct nd_router_solicit      /* router solicitation */
{struct icmp6_hdr nd_rs_hdr;/* could be followed by options */
};#define nd_rs_type               nd_rs_hdr.icmp6_type
#define nd_rs_code               nd_rs_hdr.icmp6_code
#define nd_rs_cksum              nd_rs_hdr.icmp6_cksum
#define nd_rs_reserved           nd_rs_hdr.icmp6_data32[0]struct nd_router_advert       /* router advertisement */
{struct   icmp6_hdr nd_ra_hdr;uint32_t nd_ra_reachable;   /* reachable time */uint32_t nd_ra_retransmit;  /* retransmit timer *//* could be followed by options */
};#define nd_ra_type               nd_ra_hdr.icmp6_type
#define nd_ra_code               nd_ra_hdr.icmp6_code
#define nd_ra_cksum              nd_ra_hdr.icmp6_cksum
#define nd_ra_curhoplimit        nd_ra_hdr.icmp6_data8[0]
#define nd_ra_flags_reserved     nd_ra_hdr.icmp6_data8[1]
#define ND_RA_FLAG_MANAGED       0x80
#define ND_RA_FLAG_OTHER         0x40
#define ND_RA_FLAG_HOME_AGENT    0x20
#define nd_ra_router_lifetime    nd_ra_hdr.icmp6_data16[1]struct nd_neighbor_solicit    /* neighbor solicitation */
{struct icmp6_hdr nd_ns_hdr;uint8_t nd_ns_target[16]; /* target address */uint8_t nd_ns_options[0];
};#define nd_ns_type               nd_ns_hdr.icmp6_type
#define nd_ns_code               nd_ns_hdr.icmp6_code
#define nd_ns_cksum              nd_ns_hdr.icmp6_cksum
#define nd_ns_reserved           nd_ns_hdr.icmp6_data32[0]struct nd_neighbor_advert     /* neighbor advertisement */
{struct icmp6_hdr  nd_na_hdr;uint8_t nd_na_target[16]; /* target address */uint8_t nd_na_options[0]; /* could be followed by options */
};#define nd_na_type               nd_na_hdr.icmp6_type
#define nd_na_code               nd_na_hdr.icmp6_code
#define nd_na_cksum              nd_na_hdr.icmp6_cksum
#define nd_na_flags_reserved     nd_na_hdr.icmp6_data32[0]
#define ND_NA_FLAG_ROUTER        0x00000080
#define ND_NA_FLAG_SOLICITED     0x00000040
#define ND_NA_FLAG_OVERRIDE      0x00000020struct nd_redirect            /* redirect */
{struct icmp6_hdr  nd_rd_hdr;uint8_t nd_rd_target[16]; /* target address */uint8_t nd_rd_dst[16];    /* destination address *//* could be followed by options */
};#define nd_rd_type               nd_rd_hdr.icmp6_type
#define nd_rd_code               nd_rd_hdr.icmp6_code
#define nd_rd_cksum              nd_rd_hdr.icmp6_cksum
#define nd_rd_reserved           nd_rd_hdr.icmp6_data32[0]struct nd_opt_hdr              /* Neighbor discovery option header */
{uint8_t  nd_opt_type;uint8_t  nd_opt_len;       /* in units of 8 octets */uint8_t  nd_opt_data[0];   /* followed by option specific data */
};struct nd_neighbor_solicit* nd_alloc_ns(const char *taddr, const struct nd_opt_hdr *opt, size_t size);void nd_free_ns(struct nd_neighbor_solicit **ns);void nd_print_na(const struct nd_neighbor_advert *na, const struct nd_opt_hdr *tar_opt);struct nd_opt_hdr *nd_alloc_opt_src(const char *smac, int *size);void nd_free_opt(struct nd_opt_hdr **opt);int nd_socket(uint8_t hop_limit);ssize_t nd_send(int sockfd, const void *data, size_t size, const char *daddr, int flags);ssize_t nd_recv(int sockfd, void *buf, size_t size, const char *daddr, int flags); void nd_close(int sockfd);#endif /* __ndp_h_ */

ndp.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <arpa/inet.h>
#include <netinet/ether.h>  /* for ether_aton */#include "ndp.h"
#include "common.h"struct nd_neighbor_solicit* nd_alloc_ns(const char *taddr, const struct nd_opt_hdr *opt, size_t size)
{struct sockaddr_in6 addr;struct nd_neighbor_solicit *ns;ns = (struct nd_neighbor_solicit *) calloc(1, sizeof(struct nd_neighbor_solicit) + size);ns->nd_ns_type = ND_NEIGHBOR_SOLICIT;ns->nd_ns_code = 0;if (inet_pton(AF_INET6, taddr, &addr.sin6_addr) == 0) handle_error_en(EINVAL, "taddr");memcpy(ns->nd_ns_target, &addr.sin6_addr, sizeof(addr.sin6_addr));if (NULL != opt && size > 0) memcpy(ns->nd_ns_options, opt, size);return ns;
}void nd_free_ns(struct nd_neighbor_solicit **ns)
{if (NULL != ns && NULL != *ns) {free(*ns);*ns = NULL;}
}void nd_print_na(const struct nd_neighbor_advert *na, const struct nd_opt_hdr *tar_opt) 
{char buffer[INET6_ADDRSTRLEN];printf("%02x\n", na->nd_na_type);printf("%02x\n", na->nd_na_code);printf("%04x\n", htons(na->nd_na_cksum));if (inet_ntop(AF_INET6, na->nd_na_target, buffer, INET6_ADDRSTRLEN) == NULL)handle_error("inet_ntop");printf("%s\n", buffer);printf("%s\n", ether_ntoa((struct ether_addr *) tar_opt->nd_opt_data));
}struct nd_opt_hdr *nd_alloc_opt_src(const char *smac, int *size)
{struct ether_addr *addr;struct nd_opt_hdr *opt;int tot_len = sizeof(struct nd_opt_hdr) + sizeof(struct ether_addr);opt = (struct nd_opt_hdr *) calloc(1, tot_len);opt->nd_opt_type = ND_OPT_SOURCE_LINKADDR;opt->nd_opt_len  = 1;addr = ether_aton(smac);memcpy(opt->nd_opt_data, addr->ether_addr_octet, sizeof(addr->ether_addr_octet));*size = tot_len;return opt;
}void nd_free_opt(struct nd_opt_hdr **opt)
{if (NULL != opt && NULL != *opt) {free(*opt);*opt = NULL;}
}int nd_socket(uint8_t hop_limit) 
{int sockfd;int hops = hop_limit;if ((sockfd = socket(AF_INET6, SOCK_RAW, IPPROTO_ICMPV6)) == -1) handle_error("socket");if (setsockopt(sockfd, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &hops, sizeof(hops)) == -1)handle_error("setsockopt : IPV6_HOPLIMIT");return sockfd;
}ssize_t nd_send(int sockfd, const void *data, size_t size, const char *daddr, int flags) 
{ssize_t count;struct sockaddr_in6 addr;memset(&addr, 0, sizeof(addr));addr.sin6_family = AF_INET6;inet_pton(addr.sin6_family, daddr, &addr.sin6_addr);if ((count = sendto(sockfd, data, size, flags, (struct sockaddr *)&addr, sizeof(addr))) == -1)handle_error("sendto");return count;
}ssize_t nd_recv(int sockfd, void *buf, size_t size, const char *daddr, int flags) 
{ssize_t count;struct sockaddr_in6 addr;socklen_t socklen = sizeof(addr);memset(&addr, 0, sizeof(addr));addr.sin6_family = AF_INET6;inet_pton(addr.sin6_family, daddr, &addr.sin6_addr);if ((count = recvfrom(sockfd, buf, size, flags, (struct sockaddr *)&addr, &socklen)) == -1)handle_error("recvfrom");return count;
}void nd_close(int sockfd) 
{if (close(sockfd) == -1)handle_error("close");
}

main.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <arpa/inet.h>#include "ndp.h"
#include "ipv6.h"#define BUFFER_SIZE 1500static void ndp_addr_resolution(const char *smac, const char *saddr, const char *daddr, const char *taddr)
{int sockfd, opt_len, tot_len;struct nd_opt_hdr *opt;struct nd_neighbor_advert *na;struct nd_neighbor_solicit *ns;char buffer[BUFFER_SIZE];sockfd = nd_socket(255);   // 跳数限制为 255,保证不会跑远(不能转发或者路由)// 构建消息opt = nd_alloc_opt_src(smac, &opt_len);               // 设置自己的链接层地址ns = nd_alloc_ns(taddr, opt, opt_len); tot_len = sizeof(struct nd_neighbor_solicit) + opt_len;ns->nd_ns_cksum = ipv6_cksum(saddr, daddr, IPPROTO_ICMPV6, ns, tot_len);// 发送消息nd_send(sockfd, ns, tot_len, daddr, 0);nd_free_ns(&ns);nd_free_opt(&opt);// 接收消息memset(buffer, 0, sizeof(buffer));nd_recv(sockfd, buffer, sizeof(buffer), taddr, 0);// 解析消息na = (struct nd_neighbor_advert *) buffer;opt = (struct nd_opt_hdr *) (buffer + sizeof(struct nd_neighbor_advert));nd_print_na(na, opt);nd_close(sockfd);
}int main(int argc, char *argv[])
{const char *smac  = "00:0c:0c:0c:0c:0c";        // 发送者链路层地址const char *saddr = "fe80::20c:cff:fe0c:c0c";   // 本机 IPv6 地址const char *daddr = "ff02::1:ff0d:d0d";         // 发给组播地址const char *taddr = "fe80::20d:dff:fe0d:d0d";   // 待解析 IPv6 地址ndp_addr_resolution(smac, saddr, daddr, taddr);return 0;
}

测试结果

gcc -Wall -g -o ndp ipv6.c ndp.c cksum.c main.c && watch sudo ./ndp88
00
b087
fe80::20d:dff:fe0d:d0d
0:d:d:d:d:d                # 解析出来的 link 层地址192.168.2.200> sudo tcpdump -nt -XX icmp6
IP6 fe80::20c:cff:fe0c:c0c > ff02::1:ff0d:d0d: ICMP6, neighbor solicitation, who has fe80::20d:dff:fe0d:d0d, length 320x0000:  3333 ff0d 0d0d 000c 0c0c 0c0c 86dd 6005  # 以太网地址第一位为奇数,表示组播地址0x0010:  cbe6 0020 3aff fe80 0000 0000 0000 020c  ....:...........0x0020:  0cff fe0c 0c0c ff02 0000 0000 0000 0000  ................0x0030:  0001 ff0d 0d0d 8700 2314 0000 0000 fe80  ........#.......0x0040:  0000 0000 0000 020d 0dff fe0d 0d0d 0101  ................0x0050:  000c 0c0c 0c0c                           ......
IP6 fe80::20d:dff:fe0d:d0d > fe80::20c:cff:fe0c:c0c: ICMP6, neighbor advertisement, tgt is fe80::20d:dff:fe0d:d0d, length 320x0000:  000c 0c0c 0c0c 000d 0d0d 0d0d 86dd 6000  ..............`.0x0010:  0000 0020 3aff fe80 0000 0000 0000 020d  ....:...........0x0020:  0dff fe0d 0d0d fe80 0000 0000 0000 020c  ................0x0030:  0cff fe0c 0c0c 8800 b087 6000 0000 fe80  ..........`.....0x0040:  0000 0000 0000 020d 0dff fe0d 0d0d 0201  ................0x0050:  000d 0d0d 0d0d                           ......    

这篇关于IPV6 ND协议--源码解析【根源分析】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/223326

相关文章

Linux中shell解析脚本的通配符、元字符、转义符说明

《Linux中shell解析脚本的通配符、元字符、转义符说明》:本文主要介绍shell通配符、元字符、转义符以及shell解析脚本的过程,通配符用于路径扩展,元字符用于多命令分割,转义符用于将特殊... 目录一、linux shell通配符(wildcard)二、shell元字符(特殊字符 Meta)三、s

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

使用Python实现批量访问URL并解析XML响应功能

《使用Python实现批量访问URL并解析XML响应功能》在现代Web开发和数据抓取中,批量访问URL并解析响应内容是一个常见的需求,本文将详细介绍如何使用Python实现批量访问URL并解析XML响... 目录引言1. 背景与需求2. 工具方法实现2.1 单URL访问与解析代码实现代码说明2.2 示例调用

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实