使用numba加速python科学计算

2023-10-17 05:20

本文主要是介绍使用numba加速python科学计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

技术背景

python作为一门编程语言,有非常大的生态优势,但是其执行效率一直被人诟病。纯粹的python代码跑起来速度会非常的缓慢,因此很多对性能要求比较高的python库,需要用C++或者Fortran来构造底层算法模块,再用python进行上层封装的方案。在前面写过的这篇博客中,介绍了使用f2py将fortran代码编译成动态链接库的方案,这可以认为是一种“事前编译”的手段。但是本文将要介绍一种即时编译(Just In Time,简称JIT)的手段,也就是在临近执行函数前,才对其进行编译。以下截图来自于参考链接4,讲述了关于常见的一些编译场景的区别:

用numba.jit加速求平方和

numba中大部分加速的函数都是通过装饰器(decorator)来实现的,关于python中decorator的使用方法和场景,在前面写过的这篇博客中有比较详细的介绍,让我们直接使用numba的装饰器来解决一些实际问题。这里的问题场景是,随便给定一个数列,在不用求和公式的情况下对这个数列的所有元素求平方和,即:

\[f(a)=\sum_ia_i^2 \]

我们已知类似于这种求和的形式,其实是有很大的优化空间的,相比于直接用一个for循环来求解的话。这里我们直接展示一下案例代码:

# test_jit.pyfrom numba import jit
import time
import matplotlib.pyplot as pltdef adder(max): # 普通的循环求解s = 0for i in range(max):s += i ** 2return s@jit(nopython=True)
def jit_adder(max): # 使用即时编译求解s = 0for i in range(max):s += i ** 2return sif __name__ == '__main__':time_adder = []time_jit_adder = []x = list(range(1, 10000000, 500000))for i in x:time1 = time.time()s = adder(i)time2 = time.time()s = jit_adder(i)time3 = time.time()time_adder.append(time2 - time1)time_jit_adder.append(time3 - time2)# 开始作图fig, ax1 = plt.subplots()color = 'black'ax1.set_xlabel('Numbers')ax1.set_ylabel('Time (s)', color=color)ax1.plot(x[1:], time_adder[1:], color=color, label='python')ax1.tick_params(axis='y', labelcolor=color)ax2 = ax1.twinx() # 第二个y-坐标轴color = 'red'ax2.set_ylabel('Time (s)', color=color)ax2.plot(x[1:], time_jit_adder[1:], color=color, label='jit')ax2.tick_params(axis='y', labelcolor=color)plt.title('Running time difference via using jit')fig.tight_layout()plt.legend()plt.savefig('jit.png')

运行该python文件,会在当前目录下产生一个双坐标轴的图像:


在这个计算结果中,使用了即时编译技术之后,求解的时间几乎被压缩到了微秒级别,而循环求和的方法却已经达到了秒级,加速倍数在 \(10^5\)级别。

用numba.jit加速求双曲正切函数和

在上一个案例中,也许涉及到的计算过于的简单,导致了加速倍数超出了想象的情况。因此这里我们只替换所求解的函数,看看加速的倍数是否会发生变化。这里我们采用了双曲正切求和的函数:

\[f(a)=\sum_i\frac{e^{a_i}-e^{-a_i}}{e^{a_i}+e^{-a_i}} \]

通过math来实现这个函数的计算,用以替换上一章节中求平方值的方法:

# test_jit.pyfrom numba import jit
import time
import matplotlib.pyplot as plt
import mathdef adder(max):s = 0for i in range(max):s += math.tanh(i ** 2)return s@jit(nopython=True)
def jit_adder(max):s = 0for i in range(max):s += math.tanh(i ** 2)return sif __name__ == '__main__':time_adder = []time_jit_adder = []x = list(range(1, 10000000, 500000))for i in x:time1 = time.time()s = adder(i)time2 = time.time()s = jit_adder(i)time3 = time.time()time_adder.append(time2 - time1)time_jit_adder.append(time3 - time2)fig, ax1 = plt.subplots()color = 'black'ax1.set_xlabel('Numbers')ax1.set_ylabel('Time (s)', color=color)ax1.plot(x[1:], time_adder[1:], color=color, label='python')ax1.tick_params(axis='y', labelcolor=color)ax2 = ax1.twinx()color = 'red'ax2.set_ylabel('Time (s)', color=color)ax2.plot(x[1:], time_jit_adder[1:], color=color, label='jit')ax2.tick_params(axis='y', labelcolor=color)plt.title('Running time difference via using jit')fig.tight_layout()plt.legend()plt.savefig('jit.png')

最终得到的时间对比图结果如下所示:


需要提醒的是,黑色的曲线所对应的坐标轴是左边黑色标识的坐标轴,而红色的曲线所对应的坐标轴是右边红色标识的坐标轴。因此,这个图给我们的提示信息是,使用即时编译技术之后,加速的倍率大约为 \(10^2\)。这个加速倍率相对来说更加可以接受,因为C++等语言比python直接计算的速度在特定场景下大概就是要快上几百倍。

用numba.vectorize执行向量化计算

关于向量化计算的原理和方法,在这篇文章中有比较好的描述,这里放上部分截图说明:


总结为,向量化计算的方法本质上也是一种并行化计算的方法,并行化技术的可行性是来源于 SIMD技术,在指令集的层面对数据进行并行化的处理。在 numpy的库中是自带支持SIMD的向量化计算的,因此速度非常的高,比如 numpy.dot函数就是通过向量化计算来实现的。但是numpy能够执行的任务仅仅局限在numpy自身所支持的有限的函数上,因此如果是需要一个不同的函数,那么就需要用到 numba的向量化计算模块了。
# test_vectorize.pyfrom numba import vectorize
import numpy as np
import time
import matplotlib.pyplot as pltdef ddot(max):s = 0np.random.seed(1)a1 = np.random.randn(max)np.random.seed(2)a2 = np.random.randn(max)for i in range(max):s += a1[i] * a2[i]return s@vectorize
def jit_ddot(max):s = 0np.random.seed(1)a1 = np.random.randn(max)np.random.seed(2)a2 = np.random.randn(max)for i in range(max):s += a1[i] * a2[i]return sdef numpy_ddot(max):np.random.seed(1)a1 = np.random.randn(max)np.random.seed(2)a2 = np.random.randn(max)return np.dot(a1, a2)if __name__ == '__main__':time_ddot = []time_jit_ddot = []time_numpy_ddot = []x = list(range(1, 1000000, 50000))for i in x:time1 = time.time()s = ddot(i)time2 = time.time()s = jit_ddot(i)time3 = time.time()s = numpy_ddot(i)time4 = time.time()time_ddot.append(time2 - time1)time_jit_ddot.append(time3 - time2)time_numpy_ddot.append(time4 - time3)fig, ax1 = plt.subplots()color = 'black'ax1.set_xlabel('Numbers')ax1.set_ylabel('Time (s)', color=color)ax1.plot(x[1:], time_ddot[1:], color=color, label='python')ax1.tick_params(axis='y', labelcolor=color)ax2 = ax1.twinx()color = 'red'ax2.set_ylabel('Time (s)', color=color)ax2.plot(x[1:], time_jit_ddot[1:], color=color, label='jit')ax2.plot(x[1:], time_numpy_ddot[1:], 's', color=color, label='numpy')ax2.tick_params(axis='y', labelcolor=color)plt.title('Running time difference via using jit')fig.tight_layout()plt.legend()plt.savefig('jit.png')

运行结果如下:


可以看到虽然相比与numpy的同样的向量化计算方法,numba速度略慢一些,但是都比纯粹的python代码性能要高两个量级。这里也给我们一个启发,如果追求极致的性能,最好是尽可能的使用numpy中已有的函数。当然,在一些数学函数的计算上, numpy的速度比 math还是要慢上一些的,这里我们就不展开介绍了。

总结概要

本文介绍了numba的两个装饰器的原理与测试案例,以及python中两坐标轴绘图的案例。其中基于即时编译技术jit的装饰器,能够对代码中的for循环产生较大的编译优化,可以配合并行技术使用。而基于SIMD的向量化计算技术,也能够在向量的计算中,如向量间的乘加运算等场景中,实现巨大的加速效果。这都是非常底层的优化技术,但是要分场景使用,numba这个强力的工具并不能保证在所有的计算场景下都能够产生如此的加速效果。

版权声明

本文首发链接为:https://www.cnblogs.com/dechinphy/p/numba.html
作者ID:DechinPhy
更多原著文章请参考:https://www.cnblogs.com/dechinphy/

参考链接

  1. https://zhuanlan.zhihu.com/p/78882641
  2. https://blog.csdn.net/yuanzhoulvpi/article/details/105307338
  3. https://zhuanlan.zhihu.com/p/68805601
  4. https://zhuanlan.zhihu.com/p/193035135
  5. https://zhuanlan.zhihu.com/p/72953129

这篇关于使用numba加速python科学计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/223186

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss