使用numba加速python科学计算

2023-10-17 05:20

本文主要是介绍使用numba加速python科学计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

技术背景

python作为一门编程语言,有非常大的生态优势,但是其执行效率一直被人诟病。纯粹的python代码跑起来速度会非常的缓慢,因此很多对性能要求比较高的python库,需要用C++或者Fortran来构造底层算法模块,再用python进行上层封装的方案。在前面写过的这篇博客中,介绍了使用f2py将fortran代码编译成动态链接库的方案,这可以认为是一种“事前编译”的手段。但是本文将要介绍一种即时编译(Just In Time,简称JIT)的手段,也就是在临近执行函数前,才对其进行编译。以下截图来自于参考链接4,讲述了关于常见的一些编译场景的区别:

用numba.jit加速求平方和

numba中大部分加速的函数都是通过装饰器(decorator)来实现的,关于python中decorator的使用方法和场景,在前面写过的这篇博客中有比较详细的介绍,让我们直接使用numba的装饰器来解决一些实际问题。这里的问题场景是,随便给定一个数列,在不用求和公式的情况下对这个数列的所有元素求平方和,即:

\[f(a)=\sum_ia_i^2 \]

我们已知类似于这种求和的形式,其实是有很大的优化空间的,相比于直接用一个for循环来求解的话。这里我们直接展示一下案例代码:

# test_jit.pyfrom numba import jit
import time
import matplotlib.pyplot as pltdef adder(max): # 普通的循环求解s = 0for i in range(max):s += i ** 2return s@jit(nopython=True)
def jit_adder(max): # 使用即时编译求解s = 0for i in range(max):s += i ** 2return sif __name__ == '__main__':time_adder = []time_jit_adder = []x = list(range(1, 10000000, 500000))for i in x:time1 = time.time()s = adder(i)time2 = time.time()s = jit_adder(i)time3 = time.time()time_adder.append(time2 - time1)time_jit_adder.append(time3 - time2)# 开始作图fig, ax1 = plt.subplots()color = 'black'ax1.set_xlabel('Numbers')ax1.set_ylabel('Time (s)', color=color)ax1.plot(x[1:], time_adder[1:], color=color, label='python')ax1.tick_params(axis='y', labelcolor=color)ax2 = ax1.twinx() # 第二个y-坐标轴color = 'red'ax2.set_ylabel('Time (s)', color=color)ax2.plot(x[1:], time_jit_adder[1:], color=color, label='jit')ax2.tick_params(axis='y', labelcolor=color)plt.title('Running time difference via using jit')fig.tight_layout()plt.legend()plt.savefig('jit.png')

运行该python文件,会在当前目录下产生一个双坐标轴的图像:


在这个计算结果中,使用了即时编译技术之后,求解的时间几乎被压缩到了微秒级别,而循环求和的方法却已经达到了秒级,加速倍数在 \(10^5\)级别。

用numba.jit加速求双曲正切函数和

在上一个案例中,也许涉及到的计算过于的简单,导致了加速倍数超出了想象的情况。因此这里我们只替换所求解的函数,看看加速的倍数是否会发生变化。这里我们采用了双曲正切求和的函数:

\[f(a)=\sum_i\frac{e^{a_i}-e^{-a_i}}{e^{a_i}+e^{-a_i}} \]

通过math来实现这个函数的计算,用以替换上一章节中求平方值的方法:

# test_jit.pyfrom numba import jit
import time
import matplotlib.pyplot as plt
import mathdef adder(max):s = 0for i in range(max):s += math.tanh(i ** 2)return s@jit(nopython=True)
def jit_adder(max):s = 0for i in range(max):s += math.tanh(i ** 2)return sif __name__ == '__main__':time_adder = []time_jit_adder = []x = list(range(1, 10000000, 500000))for i in x:time1 = time.time()s = adder(i)time2 = time.time()s = jit_adder(i)time3 = time.time()time_adder.append(time2 - time1)time_jit_adder.append(time3 - time2)fig, ax1 = plt.subplots()color = 'black'ax1.set_xlabel('Numbers')ax1.set_ylabel('Time (s)', color=color)ax1.plot(x[1:], time_adder[1:], color=color, label='python')ax1.tick_params(axis='y', labelcolor=color)ax2 = ax1.twinx()color = 'red'ax2.set_ylabel('Time (s)', color=color)ax2.plot(x[1:], time_jit_adder[1:], color=color, label='jit')ax2.tick_params(axis='y', labelcolor=color)plt.title('Running time difference via using jit')fig.tight_layout()plt.legend()plt.savefig('jit.png')

最终得到的时间对比图结果如下所示:


需要提醒的是,黑色的曲线所对应的坐标轴是左边黑色标识的坐标轴,而红色的曲线所对应的坐标轴是右边红色标识的坐标轴。因此,这个图给我们的提示信息是,使用即时编译技术之后,加速的倍率大约为 \(10^2\)。这个加速倍率相对来说更加可以接受,因为C++等语言比python直接计算的速度在特定场景下大概就是要快上几百倍。

用numba.vectorize执行向量化计算

关于向量化计算的原理和方法,在这篇文章中有比较好的描述,这里放上部分截图说明:


总结为,向量化计算的方法本质上也是一种并行化计算的方法,并行化技术的可行性是来源于 SIMD技术,在指令集的层面对数据进行并行化的处理。在 numpy的库中是自带支持SIMD的向量化计算的,因此速度非常的高,比如 numpy.dot函数就是通过向量化计算来实现的。但是numpy能够执行的任务仅仅局限在numpy自身所支持的有限的函数上,因此如果是需要一个不同的函数,那么就需要用到 numba的向量化计算模块了。
# test_vectorize.pyfrom numba import vectorize
import numpy as np
import time
import matplotlib.pyplot as pltdef ddot(max):s = 0np.random.seed(1)a1 = np.random.randn(max)np.random.seed(2)a2 = np.random.randn(max)for i in range(max):s += a1[i] * a2[i]return s@vectorize
def jit_ddot(max):s = 0np.random.seed(1)a1 = np.random.randn(max)np.random.seed(2)a2 = np.random.randn(max)for i in range(max):s += a1[i] * a2[i]return sdef numpy_ddot(max):np.random.seed(1)a1 = np.random.randn(max)np.random.seed(2)a2 = np.random.randn(max)return np.dot(a1, a2)if __name__ == '__main__':time_ddot = []time_jit_ddot = []time_numpy_ddot = []x = list(range(1, 1000000, 50000))for i in x:time1 = time.time()s = ddot(i)time2 = time.time()s = jit_ddot(i)time3 = time.time()s = numpy_ddot(i)time4 = time.time()time_ddot.append(time2 - time1)time_jit_ddot.append(time3 - time2)time_numpy_ddot.append(time4 - time3)fig, ax1 = plt.subplots()color = 'black'ax1.set_xlabel('Numbers')ax1.set_ylabel('Time (s)', color=color)ax1.plot(x[1:], time_ddot[1:], color=color, label='python')ax1.tick_params(axis='y', labelcolor=color)ax2 = ax1.twinx()color = 'red'ax2.set_ylabel('Time (s)', color=color)ax2.plot(x[1:], time_jit_ddot[1:], color=color, label='jit')ax2.plot(x[1:], time_numpy_ddot[1:], 's', color=color, label='numpy')ax2.tick_params(axis='y', labelcolor=color)plt.title('Running time difference via using jit')fig.tight_layout()plt.legend()plt.savefig('jit.png')

运行结果如下:


可以看到虽然相比与numpy的同样的向量化计算方法,numba速度略慢一些,但是都比纯粹的python代码性能要高两个量级。这里也给我们一个启发,如果追求极致的性能,最好是尽可能的使用numpy中已有的函数。当然,在一些数学函数的计算上, numpy的速度比 math还是要慢上一些的,这里我们就不展开介绍了。

总结概要

本文介绍了numba的两个装饰器的原理与测试案例,以及python中两坐标轴绘图的案例。其中基于即时编译技术jit的装饰器,能够对代码中的for循环产生较大的编译优化,可以配合并行技术使用。而基于SIMD的向量化计算技术,也能够在向量的计算中,如向量间的乘加运算等场景中,实现巨大的加速效果。这都是非常底层的优化技术,但是要分场景使用,numba这个强力的工具并不能保证在所有的计算场景下都能够产生如此的加速效果。

版权声明

本文首发链接为:https://www.cnblogs.com/dechinphy/p/numba.html
作者ID:DechinPhy
更多原著文章请参考:https://www.cnblogs.com/dechinphy/

参考链接

  1. https://zhuanlan.zhihu.com/p/78882641
  2. https://blog.csdn.net/yuanzhoulvpi/article/details/105307338
  3. https://zhuanlan.zhihu.com/p/68805601
  4. https://zhuanlan.zhihu.com/p/193035135
  5. https://zhuanlan.zhihu.com/p/72953129

这篇关于使用numba加速python科学计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/223186

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

浅析Rust多线程中如何安全的使用变量

《浅析Rust多线程中如何安全的使用变量》这篇文章主要为大家详细介绍了Rust如何在线程的闭包中安全的使用变量,包括共享变量和修改变量,文中的示例代码讲解详细,有需要的小伙伴可以参考下... 目录1. 向线程传递变量2. 多线程共享变量引用3. 多线程中修改变量4. 总结在Rust语言中,一个既引人入胜又可

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三