使用numba加速python科学计算

2023-10-17 05:20

本文主要是介绍使用numba加速python科学计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

技术背景

python作为一门编程语言,有非常大的生态优势,但是其执行效率一直被人诟病。纯粹的python代码跑起来速度会非常的缓慢,因此很多对性能要求比较高的python库,需要用C++或者Fortran来构造底层算法模块,再用python进行上层封装的方案。在前面写过的这篇博客中,介绍了使用f2py将fortran代码编译成动态链接库的方案,这可以认为是一种“事前编译”的手段。但是本文将要介绍一种即时编译(Just In Time,简称JIT)的手段,也就是在临近执行函数前,才对其进行编译。以下截图来自于参考链接4,讲述了关于常见的一些编译场景的区别:

用numba.jit加速求平方和

numba中大部分加速的函数都是通过装饰器(decorator)来实现的,关于python中decorator的使用方法和场景,在前面写过的这篇博客中有比较详细的介绍,让我们直接使用numba的装饰器来解决一些实际问题。这里的问题场景是,随便给定一个数列,在不用求和公式的情况下对这个数列的所有元素求平方和,即:

\[f(a)=\sum_ia_i^2 \]

我们已知类似于这种求和的形式,其实是有很大的优化空间的,相比于直接用一个for循环来求解的话。这里我们直接展示一下案例代码:

# test_jit.pyfrom numba import jit
import time
import matplotlib.pyplot as pltdef adder(max): # 普通的循环求解s = 0for i in range(max):s += i ** 2return s@jit(nopython=True)
def jit_adder(max): # 使用即时编译求解s = 0for i in range(max):s += i ** 2return sif __name__ == '__main__':time_adder = []time_jit_adder = []x = list(range(1, 10000000, 500000))for i in x:time1 = time.time()s = adder(i)time2 = time.time()s = jit_adder(i)time3 = time.time()time_adder.append(time2 - time1)time_jit_adder.append(time3 - time2)# 开始作图fig, ax1 = plt.subplots()color = 'black'ax1.set_xlabel('Numbers')ax1.set_ylabel('Time (s)', color=color)ax1.plot(x[1:], time_adder[1:], color=color, label='python')ax1.tick_params(axis='y', labelcolor=color)ax2 = ax1.twinx() # 第二个y-坐标轴color = 'red'ax2.set_ylabel('Time (s)', color=color)ax2.plot(x[1:], time_jit_adder[1:], color=color, label='jit')ax2.tick_params(axis='y', labelcolor=color)plt.title('Running time difference via using jit')fig.tight_layout()plt.legend()plt.savefig('jit.png')

运行该python文件,会在当前目录下产生一个双坐标轴的图像:


在这个计算结果中,使用了即时编译技术之后,求解的时间几乎被压缩到了微秒级别,而循环求和的方法却已经达到了秒级,加速倍数在 \(10^5\)级别。

用numba.jit加速求双曲正切函数和

在上一个案例中,也许涉及到的计算过于的简单,导致了加速倍数超出了想象的情况。因此这里我们只替换所求解的函数,看看加速的倍数是否会发生变化。这里我们采用了双曲正切求和的函数:

\[f(a)=\sum_i\frac{e^{a_i}-e^{-a_i}}{e^{a_i}+e^{-a_i}} \]

通过math来实现这个函数的计算,用以替换上一章节中求平方值的方法:

# test_jit.pyfrom numba import jit
import time
import matplotlib.pyplot as plt
import mathdef adder(max):s = 0for i in range(max):s += math.tanh(i ** 2)return s@jit(nopython=True)
def jit_adder(max):s = 0for i in range(max):s += math.tanh(i ** 2)return sif __name__ == '__main__':time_adder = []time_jit_adder = []x = list(range(1, 10000000, 500000))for i in x:time1 = time.time()s = adder(i)time2 = time.time()s = jit_adder(i)time3 = time.time()time_adder.append(time2 - time1)time_jit_adder.append(time3 - time2)fig, ax1 = plt.subplots()color = 'black'ax1.set_xlabel('Numbers')ax1.set_ylabel('Time (s)', color=color)ax1.plot(x[1:], time_adder[1:], color=color, label='python')ax1.tick_params(axis='y', labelcolor=color)ax2 = ax1.twinx()color = 'red'ax2.set_ylabel('Time (s)', color=color)ax2.plot(x[1:], time_jit_adder[1:], color=color, label='jit')ax2.tick_params(axis='y', labelcolor=color)plt.title('Running time difference via using jit')fig.tight_layout()plt.legend()plt.savefig('jit.png')

最终得到的时间对比图结果如下所示:


需要提醒的是,黑色的曲线所对应的坐标轴是左边黑色标识的坐标轴,而红色的曲线所对应的坐标轴是右边红色标识的坐标轴。因此,这个图给我们的提示信息是,使用即时编译技术之后,加速的倍率大约为 \(10^2\)。这个加速倍率相对来说更加可以接受,因为C++等语言比python直接计算的速度在特定场景下大概就是要快上几百倍。

用numba.vectorize执行向量化计算

关于向量化计算的原理和方法,在这篇文章中有比较好的描述,这里放上部分截图说明:


总结为,向量化计算的方法本质上也是一种并行化计算的方法,并行化技术的可行性是来源于 SIMD技术,在指令集的层面对数据进行并行化的处理。在 numpy的库中是自带支持SIMD的向量化计算的,因此速度非常的高,比如 numpy.dot函数就是通过向量化计算来实现的。但是numpy能够执行的任务仅仅局限在numpy自身所支持的有限的函数上,因此如果是需要一个不同的函数,那么就需要用到 numba的向量化计算模块了。
# test_vectorize.pyfrom numba import vectorize
import numpy as np
import time
import matplotlib.pyplot as pltdef ddot(max):s = 0np.random.seed(1)a1 = np.random.randn(max)np.random.seed(2)a2 = np.random.randn(max)for i in range(max):s += a1[i] * a2[i]return s@vectorize
def jit_ddot(max):s = 0np.random.seed(1)a1 = np.random.randn(max)np.random.seed(2)a2 = np.random.randn(max)for i in range(max):s += a1[i] * a2[i]return sdef numpy_ddot(max):np.random.seed(1)a1 = np.random.randn(max)np.random.seed(2)a2 = np.random.randn(max)return np.dot(a1, a2)if __name__ == '__main__':time_ddot = []time_jit_ddot = []time_numpy_ddot = []x = list(range(1, 1000000, 50000))for i in x:time1 = time.time()s = ddot(i)time2 = time.time()s = jit_ddot(i)time3 = time.time()s = numpy_ddot(i)time4 = time.time()time_ddot.append(time2 - time1)time_jit_ddot.append(time3 - time2)time_numpy_ddot.append(time4 - time3)fig, ax1 = plt.subplots()color = 'black'ax1.set_xlabel('Numbers')ax1.set_ylabel('Time (s)', color=color)ax1.plot(x[1:], time_ddot[1:], color=color, label='python')ax1.tick_params(axis='y', labelcolor=color)ax2 = ax1.twinx()color = 'red'ax2.set_ylabel('Time (s)', color=color)ax2.plot(x[1:], time_jit_ddot[1:], color=color, label='jit')ax2.plot(x[1:], time_numpy_ddot[1:], 's', color=color, label='numpy')ax2.tick_params(axis='y', labelcolor=color)plt.title('Running time difference via using jit')fig.tight_layout()plt.legend()plt.savefig('jit.png')

运行结果如下:


可以看到虽然相比与numpy的同样的向量化计算方法,numba速度略慢一些,但是都比纯粹的python代码性能要高两个量级。这里也给我们一个启发,如果追求极致的性能,最好是尽可能的使用numpy中已有的函数。当然,在一些数学函数的计算上, numpy的速度比 math还是要慢上一些的,这里我们就不展开介绍了。

总结概要

本文介绍了numba的两个装饰器的原理与测试案例,以及python中两坐标轴绘图的案例。其中基于即时编译技术jit的装饰器,能够对代码中的for循环产生较大的编译优化,可以配合并行技术使用。而基于SIMD的向量化计算技术,也能够在向量的计算中,如向量间的乘加运算等场景中,实现巨大的加速效果。这都是非常底层的优化技术,但是要分场景使用,numba这个强力的工具并不能保证在所有的计算场景下都能够产生如此的加速效果。

版权声明

本文首发链接为:https://www.cnblogs.com/dechinphy/p/numba.html
作者ID:DechinPhy
更多原著文章请参考:https://www.cnblogs.com/dechinphy/

参考链接

  1. https://zhuanlan.zhihu.com/p/78882641
  2. https://blog.csdn.net/yuanzhoulvpi/article/details/105307338
  3. https://zhuanlan.zhihu.com/p/68805601
  4. https://zhuanlan.zhihu.com/p/193035135
  5. https://zhuanlan.zhihu.com/p/72953129

这篇关于使用numba加速python科学计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/223186

相关文章

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

Python中局部变量和全局变量举例详解

《Python中局部变量和全局变量举例详解》:本文主要介绍如何通过一个简单的Python代码示例来解释命名空间和作用域的概念,它详细说明了内置名称、全局名称、局部名称以及它们之间的查找顺序,文中通... 目录引入例子拆解源码运行结果如下图代码解析 python3命名空间和作用域命名空间命名空间查找顺序命名空