面试算法题:二叉树的平衡性检测

2023-10-17 02:30

本文主要是介绍面试算法题:二叉树的平衡性检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

更详细的讲解和代码调试演示过程,请参看视频
如何进入google,算法面试技能全面提升指南

如果你对机器学习感兴趣,请参看一下链接:
机器学习:神经网络导论

二叉树由于其结构化清晰,并且变种多样,是面试中极为常见的考题。从本节开始,我们进入到有关二叉树面试题的研究中。

二叉树自身存在着一种递归结构,一个节点除了含有值外,还含有两个节点指针,这两个指针又分别指向两颗二叉树。二叉树有一个很重要的概念叫做树的高,它指的的是从某个节点开始,抵达某个叶子节点的最长路径。例如给定下面的二叉树:

这里写图片描述

如果从根节点6算起,二叉树的高度为4,因为它有4个层级,那么6的左子树,它的高度就为3,以此类推。

如果一颗二叉树是平衡的,必须满足每个节点,它左子树和右子树高度只差不超过1. 问题是,给定一颗二叉树的根节点,给出算法,判断该二叉树是否是一颗平衡二叉树。

如果一棵二叉树是空的,那么我们认为它的高度为0.
对于任意叶子节点,有就是节点的左右子树为空,那么它的高度为1.
对于非叶子节点,它的高度是先计算它的左右子树的高度,那么它本身的高度就是左右子树的最大高度加1.

由此,这道题的解决思路是计算每个节点左右子树的高度,如果两者高度只差大于1,那么它不是平衡的,如果每个节点左右子树的高度只差不超过1,那么他就是一棵平衡二叉树。

二叉树的高度可以递归来计算:
1. 如果输入的是空节点,那么返回高度值0
2. 如果输入的是叶子节点,那么返回高度1
3. 如果输入的是非叶子节点,那么分别计算左右子树的高度,选取其中最大者加1作为本节点的高度。

根据上面思路,我们实现的算法如下:


public class BalancedTree {private boolean balanced = true;public boolean isTreeBalanced(TreeNode node) {computeTreeHeight(node);return balanced;}private int computeTreeHeight(TreeNode node) {if (node == null) {return 0;}int leftHeight = computeTreeHeight(node.left);int rightHeight = computeTreeHeight(node.right);int height = leftHeight > rightHeight ? leftHeight : rightHeight;if (Math.abs(rightHeight - leftHeight) > 1) {balanced = false;}return height + 1;}
}

computeTreeHeight 接收的参数是一个二叉树的节点,然后分别计算该节点的左右子树高度,然后根据结果计算自身高度,在计算过程中,如果发现左右子树高度超过1,那么把balanced 设置成false, 如果该值设置成false的话,那么该二叉树就不是平衡的。

我们看看二叉树节点的定义和构造:


public class TreeNode {public int vaule;public TreeNode left;public TreeNode right;public TreeNode(int v) {this.vaule = v;this.left = this.right = null;}
}public class TreeUtil {private TreeNode root = null;public void addTreeNode(TreeNode node) {if (root == null) {root = node;return;}TreeNode cur = root, prev = root;while (cur != null) {prev = cur;if (cur.vaule > node.vaule) {cur = cur.left;} else {cur = cur.right;}}if (prev.vaule > node.vaule) {prev.left = node;} else {prev.right = node;}}public TreeNode getTreeRoot() {return root;}
}

TreeUtil用来构建一棵二叉树,它构建的是一棵排序二叉树,如果加入的节点比当前节点值小,那么把节点加入当前节点的左子树,如果加入节点的值比当前节点值大,那么把节点加入当前节点的右子树。我们再看看主函数入口处代码:

public class BinaryTree {public static void main(String[] s) {int[] arr = new int[]{6,4,9,2,5,7,10,1,3,8};TreeUtil util = new TreeUtil();for (int i = 0; i < arr.length; i++) {TreeNode n = new TreeNode(arr[i]);util.addTreeNode(n);}TreeNode root = util.getTreeRoot();BalancedTree bt = new BalancedTree();boolean isBalanced = bt.isTreeBalanced(root);System.out.println("If the binary tree is banlanced ? the answer is : " + isBalanced);
public class BinaryTree {public static void main(String[] s) {int[] arr = new int[]{6,4,9,2,5,7,10,1,3,8};TreeUtil util = new TreeUtil();for (int i = 0; i < arr.length; i++) {TreeNode n = new TreeNode(arr[i]);util.addTreeNode(n);}TreeNode root = util.getTreeRoot();BalancedTree bt = new BalancedTree();boolean isBalanced = bt.isTreeBalanced(root);System.out.println("If the binary tree is banlanced ? the answer is : " + isBalanced);util.addTreeNode(new TreeNode(11));util.addTreeNode(new TreeNode(12));util.addTreeNode(new TreeNode(13));root = util.getTreeRoot();isBalanced = bt.isTreeBalanced(root);System.out.println("If the binary tree is banlanced ? the answer is : " + isBalanced);}
}}
}

开始的for 循环利用TreeUtil构建了前面图像所示的二叉树,然后获得该二叉树的根节点,然后使用BalancedTree来检验该二叉树是否平衡,通过观察我们知道,该二叉树每个节点的左右子树高度不超过1,所以该二叉树是平衡的。

接下来,我们又给二叉树加入三个节点,节点值分别为11,12,13,于是二叉树如图所示:
这里写图片描述

此时我们可以看到,节点10的左子树是空,因此左子树的高度是0,右子树的高度是3,左右子树的高度相差超过了1,所以此时该二叉树是不平衡的。如果运行代码,可以发现,我们的代码能给出去正确的判断,因此代码对算法的实现是正确的。

该算法主要是递归的去计算每个节点的高度,在计算过程中,每个节点最多被访问1次,因此算法的复杂度是O(n),算法没有申请新内存因此算法的空间复杂度是O(1).

更详细的解释和代码演示,请参看视频。
更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号:
这里写图片描述

这篇关于面试算法题:二叉树的平衡性检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/222316

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

字节面试 | 如何测试RocketMQ、RocketMQ?

字节面试:RocketMQ是怎么测试的呢? 答: 首先保证消息的消费正确、设计逆向用例,在验证消息内容为空等情况时的消费正确性; 推送大批量MQ,通过Admin控制台查看MQ消费的情况,是否出现消费假死、TPS是否正常等等问题。(上述都是临场发挥,但是RocketMQ真正的测试点,还真的需要探讨) 01 先了解RocketMQ 作为测试也是要简单了解RocketMQ。简单来说,就是一个分