用php计算自由落体,关于自由落体公式的简单修正

2023-10-17 00:30

本文主要是介绍用php计算自由落体,关于自由落体公式的简单修正,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

c9ce057d82b07289e23beaa33a1785c2.png

自由落体公式-示意图

自由落体的一般定义是:只考虑吸引天体和被吸引天体的引力因素,忽略其他的运动和大气摩擦等因素,物体从静止(相对于吸引天体)开始接近吸引天体的运动。根据这个定义,假设地球为一个均匀球体,半径为r,质量为M,物体从距离地表h高度处自由落下。求落到地面的时间t,或者根据时间t求h。

令s为t时刻物体左右下落的物体与地表的距离,忽略物体的小质量,那么可以列出微分方程:

$$\frac{d^2 s}{dt^2}=-\frac{GM}{(r+s)^2}\tag{1}$$并且初始条件是$t=0,s=h,\dot{s}=v=0$

在实际应用中,我们不必求出这道微分方程的精确解,因为这个解极其麻烦,在之前曾经讨论过。我们只需要求出一个有足够精确度的近似解就行。根据泰勒级数展开式

$$f(x)=f(x_0)+f'(x_0)(x-x_0)+f''(x_0)\frac{x^2}{2!}+f'''(x_0)\frac{x^3}{3!}+...$$

对于上述的微分方程(1),我们已经有了$s(0)=h,s'(0)=0,s''(0)=-\frac{GM}{(r+h)^2}$,由于$\frac{d\ddot{s}}{dt}=\dot{s}\frac{d\ddot{s}}{ds}$,并且不难证明$\frac{d\ddot{s}}{ds}$是有限的,所以$s'''(0)=0$,于是我们可以写出微分方程的近似解:

$$s=h-\frac{GM}{2(r+h)^2}t^2\tag{2}$$

它的截断误差是$O(t^4)$。如果求落到地表所用时间,那么有s=0,则

$$h=\frac{GM}{2(r+h)^2}t^2\tag{3}$$

另外,我们还有$GM=r^2 g$,g是地球表面的重力加速度。于是(3)又可以改写成

$$h=\frac{r^2 g}{2(r+h)^2}t^2\tag{4}$$

上述精确度有多高?我们不妨从h很小和h很大两方面来验证:

首先对于h远远小于r的情况,我们有$\frac{r^2}{(r+h)^2}\approx 1$,于是(4)退化成

$$h=\frac{g}{2}t^2\tag{5}$$这正是我们在高中接触到的自由落体的公式!

其次是对于r远远小于h的情况,我们不妨用这条公式求一下之前的一道题目:一个物体自由下落, 9天后到达地面,问这个物体刚开始下落时的高度。

由于r远远小于h,得到:

$$h(r+h)^2=\frac{r^2 g}{2}t^2 \approx h^3\tag{6}$$

我们把$r=6371000m,t=9*86400s,g=9.8m//s^2$代入(6),可以计算得到:

$h=515482465m=51.5*10^4 km$,这与官方答案几乎完全相等!

由此可见,修正后的自由落体公式具有很高的正确性!因此,参加天文奥赛的朋友不妨掌握这公式,或者评卷人还会给大家额外的加分呢!(创意分^_^)

更详细的转载事宜请参考:《科学空间FAQ》

如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。

如果您觉得本文还不错,欢迎分享/打赏本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!

打赏

微信打赏

支付宝打赏

因为网站后台对打赏并无记录,因此欢迎在打赏时候备注留言。你还可以点击这里或在下方评论区留言来告知你的建议或需求。

如果您需要引用本文,请参考:

苏剑林. (Apr. 04, 2010). 《关于自由落体公式的简单修正 》[Blog post]. Retrieved from https://spaces.ac.cn/archives/584

这篇关于用php计算自由落体,关于自由落体公式的简单修正的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/221720

相关文章

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

如何使用Python实现一个简单的window任务管理器

《如何使用Python实现一个简单的window任务管理器》这篇文章主要为大家详细介绍了如何使用Python实现一个简单的window任务管理器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 任务管理器效果图完整代码import tkinter as tkfrom tkinter i

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

利用Python实现添加或读取Excel公式

《利用Python实现添加或读取Excel公式》Excel公式是数据处理的核心工具,从简单的加减运算到复杂的逻辑判断,掌握基础语法是高效工作的起点,下面我们就来看看如何使用Python进行Excel公... 目录python Excel 库安装Python 在 Excel 中添加公式/函数Python 读取

使用EasyExcel实现简单的Excel表格解析操作

《使用EasyExcel实现简单的Excel表格解析操作》:本文主要介绍如何使用EasyExcel完成简单的表格解析操作,同时实现了大量数据情况下数据的分次批量入库,并记录每条数据入库的状态,感兴... 目录前言固定模板及表数据格式的解析实现Excel模板内容对应的实体类实现AnalysisEventLis

Java中数组转换为列表的两种实现方式(超简单)

《Java中数组转换为列表的两种实现方式(超简单)》本文介绍了在Java中将数组转换为列表的两种常见方法使用Arrays.asList和Java8的StreamAPI,Arrays.asList方法简... 目录1. 使用Java Collections框架(Arrays.asList)1.1 示例代码1.

Java8需要知道的4个函数式接口简单教程

《Java8需要知道的4个函数式接口简单教程》:本文主要介绍Java8中引入的函数式接口,包括Consumer、Supplier、Predicate和Function,以及它们的用法和特点,文中... 目录什么是函数是接口?Consumer接口定义核心特点注意事项常见用法1.基本用法2.结合andThen链

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::