强化学习中Sara算法和Q-Learning算法的区别

2023-10-16 20:10

本文主要是介绍强化学习中Sara算法和Q-Learning算法的区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 Q-Learning算法:

1,在环境S1中选出动作a1

2,得到a1这一步的动作价值

Q-target = R + γ*在状态S2中最优的下一步Q(s2, *a)的值

3,更新s1,a1这个状态的Q值

4,做出a1动作得到s2

Sara算法:

1,在环境S1中选出动作a1并得到S2

2,由环境S2选出将要下一步要进行的a2

3,由a1的奖励R,和Q(s2,a2)得到Q-target

 

4,由Q-target和原先的Q(s1,a1)去更新得到新的Q(s1,a1)

注:Q(s1,a1) = Q(s1, a1)+ α(Q-target - Q(s1,a1)) #  α是学习率

        二者在流程上是十分相似的,其区别在于Q-Learning在计算下一步的Q值时是用的S2状态中最好的那个Q值,但由于greedy在,所以实际上可能并不会采取这个动作。而Sara算法计算下一步Q值时是直接用已经得出的那个a2动作的Q值。

        换句话说,当走到S2这个状态时,如果S2是个“好状态”,那么Sara一定会选择最优的那一步a2,而Q-Learning可能会“冒险”选择其他动作(要看动作选择函数中的greedy police的值)。

        可以这么理解:面对一道难题,Sara比较老实,直接回答自己知道的答案,然后再检查自己这道题的是否拿到了分。而Q-Learning这个学生很聪明,他知道这道题(这个状态)的最优答案,但他也很调皮,他觉得这道题已经知道答案了所以先把这分加上,然后可能会去尝试其他答案。

        对于同样的(s1,a1)得到的S2,Sara是先做出了a2动作,再计算这个动作对应的Q值,而Q-learning是得到S2后思考这个S2这个状态最优的动作是什么后就加上这个最优动作的Q值,然后再去选动作。

        所以在模型训练表现上来看,Sara会看上去相对胆小,选错了就得到选错了的Q值,而Q-learning会更激进,哪怕选错了,也要得到这一步最优的Q值。

        在这个阶段,如果将greedy police(探索程度)的值设为1,也就是说Q-learning一定会选择计算Q-target时的那个动作,Sara也会选择S2对应的最优动作(不会选错),那么Q-learning和Sara算法某种程度上可以看做是一样的。(我个人看法)

这篇关于强化学习中Sara算法和Q-Learning算法的区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/220530

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]