基于粒子群算法的多无人机协同任务分配——matlab实现

2023-10-16 07:20

本文主要是介绍基于粒子群算法的多无人机协同任务分配——matlab实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.问题背景

1.1 无人机任务分配:

1.2 场景设置:

2.解决思路

2.1 粒子群优化

2.1.1 相关背景

2.1.2 算法流程

2.2 应用思路

3.MATLAB代码实现

4.输出结果


【若觉文章质量良好且有用,请别忘了点赞收藏加关注,这将是我继续分享的动力,万分感谢!】

1.问题背景

1.1 无人机任务分配:

使用4(自定义)台无人机,对8(自定义)个目标分别执行“分类,攻击,毁伤评估”任务。因此,对无人机和目标进行一一匹配,则总共有3*8=24个小任务。

1.2 场景设置:

  • 在范围为(0,0)到(300,300)单位(KM)平面坐标系内随机取8个目标点,(仿真时取200到250)间较分散(坐标差大于3)的点,减少后期的误差;

  • 4个飞机初始点(0到50),分别给与坐标位置;

  • 无人机航向∈(0°, 360°),目标航向∈(0°, 360°),初始速度100M/s,目标假设静止;

  • 最小转弯半径为1.5KM

2.解决思路

2.1 粒子群优化

2.1.1 相关背景

粒子群算法(PSO)是智能优化算法中的一类,一种基于群体的随机优化技术。由R.Eberhart博士和J.Kennedy博士于1995年发明,源于对鸟群捕食行为的研究。与其他同类进化算法不同,粒子群优化并非采用群体解的竞争机制来迭代产生最优解,而是群体解的合作机制来迭代产生最优解;此外,相比之下,PSO概念简单、易实现,且需调节的参数少,是不少研究的主要优化工具。

2.1.2 算法流程

  1. 初始化粒子群

  2. 迭代

    1. 粒子相互之间交换信息,获取彼此间的适应度值信息;

    2. 各个粒子根据获取信息更新位置和速度;

  3. 输出结果

2.2 应用思路

  • 每一个粒子代表了一次完整的任务分配方案。
  • 粒子中包含两个向量,UAV向量和Target向量。UAV向量表示无人机的出发序列,是一个24维的向量,每一维的取值范围为序号1到4。Target向量表示UAV向量对应的目标序列,也是一个32维向量,每一维向量为序号1到8,且每个序号总共出现3次。
  • 任务分配完毕后,每一台无人机都是按着UAV向量和Target向量的对应顺序,各自执行分配给每一台无人机的任务,待最后一台无人机执行完任务后,整个任务结束。
  • Target和Vehicle向量组成的粒子用来计算代价函数。
  • 任务的代价评估分两个重要量:整个无人机群所消耗的油量代价V1,由整个无人机群的总航程来计算的,越小越好;整个无人机群执行任务所消耗的总时间V2,由航程最长的无人机来决定的,同样越小越好;总V=A×V1+B×V2。
  • 计算每台飞机单次小任务的航程:目标与无人机的初始位置以及无人机的初始速度和航向都已知,考虑到无人机有转向过载限制。在此规定每台无人机转向的最小曲率圆,即转弯半径为1.5KM,在计算航程时按DUBINS曲线来计算单次任务的航程(最小航程)。
  • 然后再得出大任务的总航程V1,再计算每台无人机分别的航程并找出最大值V2。用V1和V2去计算V。
  • 模型目标为找到代价函数的最大值粒子,当作任务分配的最终选择。
  • 迭代次数为100,粒子数为1000。

3.MATLAB代码实现

clc
clear
%% 粒子群算法Nv = 4; % 无人机
Nt = 8; % 目标
Np = 3; % 任务数
Nc = Nt * Np; % 匹配对 (目标*任务)n = 1000; % 粒子群规模
iter = 100; % 迭代次数
c1 = 0.95;
c2 = 0.35;
w = 0.9;A = 0.95;% 目标函数1的权重
B = 0.05;% 目标函数2的权重% 初始
Vehicle = randi([1 3],n,18);
for i = 1:nTarget(i,:) = fix((randperm(18)-1)/3)+1;F(1,i) = fitness(Vehicle(i,:),Target(i,:));
endF_p_min(1) = min(F(1,:));
F_min(1) = min(F_p_min);p_Vehicle(1,:) = Vehicle(find(F(1,:) == F_p_min(1)),:);
p_Target(1,:) = Target(find(F(1,:) == F_p_min(1)),:);all_Vehicle = p_Vehicle(find(F_p_min==F_min(1)),:);
all_Target = p_Target(find(F_p_min==F_min(1)),:);% 迭代
for i = 2:iter更新F(i,:)F_p_min(i) = min(F(i,:));F_min(i) = min(F_p_min);p_Vehicle(i,:) = Vehicle(min(find(F(i,:) == F_p_min(i))),:);p_Target(i,:) = Target(min(find(F(i,:) == F_p_min(i))),:);all_Vehicle = p_Vehicle(min(find(F_p_min==F_min(i))),:);all_Target = p_Target(min(find(F_p_min==F_min(i))),:);
endr_min = 1.5; % 最大转弯半径
v0 = 100; % 无人机速度V1 = sum(V1_0);V2 = max(V2_0) / v0;F = A * V1 + B * V2;

4.输出结果

33f072570e0e47f1982a79cc4afc96e5.png

 

8868149b1a4744af9d51412fb45e1101.png

粒子群规模1000
迭代次数100
The initial position and orientation of the UAVS: (X,Y,D)
UAV1:     16   14  153
UAV2:     48  14  65
...


Location of target: (X,Y,D)
Target1:     56   80  182
Target2:     77   52  309
...


The path of the UAVS
UAV1:     (Target 2,Task 1)--(Target 2,Task 2)--(Target 7,Task 1)--(Target 7,Task 2)--(Target 7,Task 3)--(Target 4,Task 2)--(Target 4,Task 3)--(Target 8,Task 3)--(Target 5,Task 3)
...


The voyage of the UAVS
UAV1:     241.8579km
UAV2:     147.6254km
UAV3:     120.1293km
...

代码不易,请点赞+收藏

A资源说明.rar - 蓝奏云

 

A资源-UAV.rar - 蓝奏云

【若觉文章质量良好且有用,请别忘了点赞收藏加关注,这将是我继续分享的动力,万分感谢!】

 

这篇关于基于粒子群算法的多无人机协同任务分配——matlab实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/219918

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time