折线分割平面 2050

2023-10-15 08:58
文章标签 分割 平面 折线 2050

本文主要是介绍折线分割平面 2050,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Problem Description

我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。

Input

输入数据的第一行是一个整数C,表示测试实例的个数,然后是行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。

Output

对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。

Sample Input

2

1

2

Sample Output

2

7

#include <iostream>
int main(int argc, const char *argv[])
{
__int64 result[10000] = {2};
for(int i = 1;i < 10000;++ i)
{
result[i] = result[i - 1] + 4 * (i + 1) - 3;
}
int c = 0;
std::cin >> c;
while(c --)
{
int n = 0;
std::cin >> n;
std::cout << result[n - 1] << std::endl;
}
//system("pause");
return 0;
}

这篇关于折线分割平面 2050的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/216675

相关文章

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

C#中字符串分割的多种方式

《C#中字符串分割的多种方式》在C#编程语言中,字符串处理是日常开发中不可或缺的一部分,字符串分割是处理文本数据时常用的操作,它允许我们将一个长字符串分解成多个子字符串,本文给大家介绍了C#中字符串分... 目录1. 使用 string.Split2. 使用正则表达式 (Regex.Split)3. 使用

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

求空间直线与平面的交点

若直线不与平面平行,将存在交点。如下图所示,已知直线L过点m(m1,m2,m3),且方向向量为VL(v1,v2,v3),平面P过点n(n1,n2,n3),且法线方向向量为VP(vp1,vp2,vp3),求得直线与平面的交点O的坐标(x,y,z): 将直线方程写成参数方程形式,即有: x = m1+ v1 * t y = m2+ v2 * t

高斯平面直角坐标讲解,以及地理坐标转换高斯平面直角坐标

高斯平面直角坐标系(Gauss-Krüger 坐标系)是基于 高斯-克吕格投影 的一种常见的平面坐标系统,主要用于地理信息系统 (GIS)、测绘和工程等领域。该坐标系将地球表面的经纬度(地理坐标)通过一种投影方式转换为平面直角坐标,以便在二维平面中进行距离、面积和角度的计算。 一 投影原理 高斯平面直角坐标系使用的是 高斯-克吕格投影(Gauss-Krüger Projection),这是 横

基于YOLO8的图片实例分割系统

文章目录 在线体验快速开始一、项目介绍篇1.1 YOLO81.2 ultralytics1.3 模块介绍1.3.1 scan_task1.3.2 scan_taskflow.py1.3.3 segment_app.py 二、核心代码介绍篇2.1 segment_app.py2.2 scan_taskflow.py 三、结语 代码资源:计算机视觉领域YOLO8技术的图片实例分割实

如何将卷积神经网络(CNN)应用于医学图像分析:从分类到分割和检测的实用指南

引言 在现代医疗领域,医学图像已经成为疾病诊断和治疗规划的重要工具。医学图像的类型繁多,包括但不限于X射线、CT(计算机断层扫描)、MRI(磁共振成像)和超声图像。这些图像提供了对身体内部结构的详细视图,有助于医生在进行准确诊断和制定个性化治疗方案时获取关键的信息。 1. 医学图像分析的挑战 医学图像分析面临诸多挑战,其中包括: 图像数据的复杂性:医学图像通常具有高维度和复杂的结构

图像分割分析效果2

这次加了结构化损失 # 训练集dice: 0.9219 - iou: 0.8611 - loss: 0.0318 - mae: 0.0220 - total: 0.8915  # dropout后:dice: 0.9143 - iou: 0.8488 - loss: 0.0335 - mae: 0.0236 - total: 0.8816 # 加了结构化损失后:avg_score: 0.89

n条直线最多能划分出多少个平面?

N条直线,两两相交,其交点各不不同,则产生的交点数目为N个数中取2个数的组合; 同时,也只有这种情况下(两两相交,也交点不同),分割的平面数最多, 数目为: 2 + (N-1)(N+2)/2.  这里求最少平面数没有意义,因为最少平面数就是N+1, 即N条直线两两平行的时候,分割的平面最少。 举例: 1条直线分割平面数最多为2; a1 = 2 2条直线分割平面数最多为4;