深度学习论文阅读笔记 | MemNetIAN情感分析论文EMNLP 2016

2023-10-15 03:59

本文主要是介绍深度学习论文阅读笔记 | MemNetIAN情感分析论文EMNLP 2016,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习论文阅读笔记 | MemNet&IAN情感分析论文EMNLP 2016

在这里插入图片描述

嗨,我是error。

这又是我的一个新系列,主要记录我阅读过的一些论文的笔记,与大家一起分享讨论,不定期更新,若有错误欢迎随时指出。


泛读

在这里插入图片描述

首先说一下整一篇论文的结构,这篇论文作者从MemNet汲取灵感,应用在多情感分类问题上面,结合注意力模型和定位取得了不错的成绩,达到了当时的SOTA。

论文的核心我也已经在思维导图中标记出来了,主要是在注意力模型和定位上面。

Abstract

We introduce a deep memory network for aspect level sentiment classification. Un- like feature-based SVM and sequential neu- ral models such as LSTM, this approach ex- plicitly captures the importance of each con- text word when inferring the sentiment polar- ity of an aspect. Such importance degree and text representation are calculated with multi- ple computational layers, each of which is a neural attention model over an external mem- ory. Experiments on laptop and restaurant datasets demonstrate that our approach per- forms comparable to state-of-art feature based SVM system, and substantially better than LSTM and attention-based LSTM architec- tures. On both datasets we show that mul- tiple computational layers could improve the performance. Moreover, our approach is also fast. The deep memory network with 9 lay- ers is 15 times faster than LSTM with a CPU implementation.

摘要在对比了经典的SVM和LSTM模型后提到了自己这个模型的优点:

1.准确率高,目前的SOTA

2.运行速度快,即使九层依旧比LSTM快15倍

3.模型更稳定,在分析极性情感时更robust

Introduction

这一个part举了一个例子:

“great food but the service was dreadful!”

这是一个很典型的例子,首先是涉及到两个aspect,其次是两个aspect的评分极性完全相反。十分考验模型的分析准确度。

Despite these advantages, conventional neural
models like long short-term memory (LSTM) (Tang et al., 2015a) capture context information in an im- plicit way, and are incapable of explicitly exhibit- ing important context clues of an aspect.

紧接着作者分析了传统LSTM的缺点,不能够很明确的定位到决定这个aspect的情感词。

Each layer is a content- and location- based attention model, which first learns the importance/weight of each context word and then utilizes this information to calculate continu- ous text representation.

然后作者点出了自己模型的一个架构,即共享参数,打通分析信息的屏障。

As every component is differentiable, the entire model could be efficiently trained end-to- end with gradient descent, where the loss function is the cross-entropy error of sentiment classification

还有一些简要的介绍。


精读

首先看下整个模型的结构示意图
在这里插入图片描述

整个模型是借鉴了End-to-end MemNet的结构,
在这里插入图片描述

首先将aspect词提取出来后将剩下的句子和aspect都转化为vector,注意这里的embedding参数是共享学习的,没有区分。

It is helpful to note that the parameters of attention
and linear layers are shared in different hops. There- fore, the model with one layer and the model with nine layers have the same number of parameters.

如果aspect词量不同如何解决,作者也给出了方案,就是取平均,为了方便,下面的内容都以单个aspect词为例

If aspect is a single word like “food” or “service”, aspect representation is the embedding of aspect word. For the case where aspect is multi word expression like “battery life”, aspect represen- tation is an average of its constituting word vectors (Sun et al., 2015).

3.3 Content Attention

在这里插入图片描述

接下来的重点为Content Attention,通过一个0-1的权重a来调节注意力,而a又是通过一个softmax(g)求得,g则是通过一个对线性层非线性tanh激活所得到的。

在这里插入图片描述
在这里插入图片描述

这里作者总结了这个模型的两个优点,即

One advantage is that this model could adaptively assign an importance score to each piece of memory mi according to its semantic relatedness with the aspect. Another advantage is that this at- tention model is differentiable, so that it could be easily trained together with other components in an end-to-end fashion.

1.可根据aspect自动调整在每个memory的注意力

2.受益于此模型结果,此模型可以快速融合与其他模块在一起训练。

3.4 Location Attention

本模型另一个亮点为定位注意力模型,一般来说离这个词越近,注意力就应该越大,此模型也符合这样的认知。作者同时给出了四个注意力策略供选择。

4.4 Effects of Location Attention

在这里插入图片描述

可见定位注意力模型对准确定位对应的情感词有很大帮助

但在多个hop上跑的时候发现只有在5之后才略显优势

在这里插入图片描述


小总结

本篇论文从记忆网络的架构得到灵感将它应用到多情感分类问题上面,最终取得了当时的SOTA。此模型最显著的优势我觉得有两个,一个是面对多aspect的情感分析上很robust,这得益于location attention的功劳。其次是速度,是的,还记得开头作者提到的吗?即使是9层hop都要比LSTM快15倍,这个速度的提升是十分可怕的。究其原因是作者在hop上面的巧妙结构上,没有采用LSTM一层套一层的结构而是相对独立的一个个hop,即保证了效果也大大提高了速度。

如果你也想下载原文来看看,为了防止链接安全性,关注微信公众号【error13】并回复IAN即可免费获得链接。

在这里插入图片描述
在这里插入图片描述

这篇关于深度学习论文阅读笔记 | MemNetIAN情感分析论文EMNLP 2016的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/215211

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学