暑期实训Python第十天,seaborn画图 --------<泰坦尼克号沉船>数据可视化

本文主要是介绍暑期实训Python第十天,seaborn画图 --------<泰坦尼克号沉船>数据可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

网上的泰坦尼克号沉船数据可视化,写的全是代码,没点分析过程,干脆我自己来写

• PassengerId => 乘客ID
• Survived => 获救情况(1为获救,0为未获救)
• Pclass => 乘客等级(1/2/3等舱位)
• Name => 乘客姓名
• Sex => 性别
• Age => 年龄
• SibSp => 堂兄弟/妹个数
• Parch => 父母与小孩个数
• Ticket => 船票信息
• Fare => 票价
• Cabin => 客舱
• Embarked => 登船港口

先分析 不同等级的船舱 里的存活率(条形图)

Pclass 分成1,2,3个等级 Survived 分为 0 和 1
使用groupby 将数据 分成组, 比如groupby("Pclass"),可以将数据划分成三个部分。
groupby(["Pclass","Survived"])就将数据分成六个部分

estimator:可回调函数
作用:设置每个分类箱的统计函数

指定x分类变量进行分组,指定 y为数据分布,绘制垂直条形图

sns.barplot(x=df.Pclass, y=df.Survived, estimator=lambda x: np.sum(x) / len(x), data=df)
plt.show()

在这里插入图片描述
分析结果
一等舱位 的乘客存活率最大,最容易存活,存活率为0.629
三等舱的 乘客存活几率最小,存活率为0.2423

分析年龄和存活率 的关系

df["Age"].describe()
count    714.000000
mean      29.699118
std       14.526497
min        0.420000
25%       20.125000
50%       28.000000
75%       38.000000
max       80.000000
Name: Age, dtype: float64

总数据有891条,可是年龄只有714,说明年龄有很多为 空值,所以为了数据的可靠性,将空值转变成 平均值

df.fillna({"Age":df.Age.mean()},inplace=True)

在这里插入图片描述

#年龄的直方图
sns.distplot(df.Age,bins=20)
plt.show()

在这里插入图片描述

仿照上面生成船舱等级和存活率 第一个的做法:

sns.barplot(x=df.Age, y=df.Survived, estimator=lambda x: np.sum(x) / len(x), data=df)

结果: 是很多密密麻麻的矩形,非常难观察出规律
在这里插入图片描述
这里就提到了一个新的名词:连续数据离散化,通俗的将就是分段

这里又由于作者的知识 是白痴状态,这里就需要弄懂cut 方法里的bins属性
小tips:
pandas中pd.cut()的功能和作用,cut(a,bins) a指的是需要切分的对象,b指的是需要将对象切成什么样子的份,bins是一个列表bins = [0, 59, 70, 80, 100]。这里题目可以将年龄范围从0-80,以10岁为区间,生成8个矩形

df["Age_band"] = pd.cut(df.Age,bins=np.arange(0,90,10))
sns.barplot(x="Age_band", y=df.Survived, estimator=lambda x: np.sum(x) / len(x), data=df)

在这里插入图片描述
观察图形可以分析出:
10岁以下的孩子存活率最高,说明船上的人还是非常有人性的,而大于60岁的人,存活率偏低,说明老人行走不便,然后你懂的。普通人的存活率不超过0.5,说明基本上等于选择一个就等于放弃另外一个。

分析其他的数据和存活率的关系,由于代码一样就展示图:
在这里插入图片描述
在这里插入图片描述

性别影响真的很大

在这里插入图片描述

这篇关于暑期实训Python第十天,seaborn画图 --------<泰坦尼克号沉船>数据可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/213234

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.