暑期实训Python第十天,seaborn画图 --------<泰坦尼克号沉船>数据可视化

本文主要是介绍暑期实训Python第十天,seaborn画图 --------<泰坦尼克号沉船>数据可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

网上的泰坦尼克号沉船数据可视化,写的全是代码,没点分析过程,干脆我自己来写

• PassengerId => 乘客ID
• Survived => 获救情况(1为获救,0为未获救)
• Pclass => 乘客等级(1/2/3等舱位)
• Name => 乘客姓名
• Sex => 性别
• Age => 年龄
• SibSp => 堂兄弟/妹个数
• Parch => 父母与小孩个数
• Ticket => 船票信息
• Fare => 票价
• Cabin => 客舱
• Embarked => 登船港口

先分析 不同等级的船舱 里的存活率(条形图)

Pclass 分成1,2,3个等级 Survived 分为 0 和 1
使用groupby 将数据 分成组, 比如groupby("Pclass"),可以将数据划分成三个部分。
groupby(["Pclass","Survived"])就将数据分成六个部分

estimator:可回调函数
作用:设置每个分类箱的统计函数

指定x分类变量进行分组,指定 y为数据分布,绘制垂直条形图

sns.barplot(x=df.Pclass, y=df.Survived, estimator=lambda x: np.sum(x) / len(x), data=df)
plt.show()

在这里插入图片描述
分析结果
一等舱位 的乘客存活率最大,最容易存活,存活率为0.629
三等舱的 乘客存活几率最小,存活率为0.2423

分析年龄和存活率 的关系

df["Age"].describe()
count    714.000000
mean      29.699118
std       14.526497
min        0.420000
25%       20.125000
50%       28.000000
75%       38.000000
max       80.000000
Name: Age, dtype: float64

总数据有891条,可是年龄只有714,说明年龄有很多为 空值,所以为了数据的可靠性,将空值转变成 平均值

df.fillna({"Age":df.Age.mean()},inplace=True)

在这里插入图片描述

#年龄的直方图
sns.distplot(df.Age,bins=20)
plt.show()

在这里插入图片描述

仿照上面生成船舱等级和存活率 第一个的做法:

sns.barplot(x=df.Age, y=df.Survived, estimator=lambda x: np.sum(x) / len(x), data=df)

结果: 是很多密密麻麻的矩形,非常难观察出规律
在这里插入图片描述
这里就提到了一个新的名词:连续数据离散化,通俗的将就是分段

这里又由于作者的知识 是白痴状态,这里就需要弄懂cut 方法里的bins属性
小tips:
pandas中pd.cut()的功能和作用,cut(a,bins) a指的是需要切分的对象,b指的是需要将对象切成什么样子的份,bins是一个列表bins = [0, 59, 70, 80, 100]。这里题目可以将年龄范围从0-80,以10岁为区间,生成8个矩形

df["Age_band"] = pd.cut(df.Age,bins=np.arange(0,90,10))
sns.barplot(x="Age_band", y=df.Survived, estimator=lambda x: np.sum(x) / len(x), data=df)

在这里插入图片描述
观察图形可以分析出:
10岁以下的孩子存活率最高,说明船上的人还是非常有人性的,而大于60岁的人,存活率偏低,说明老人行走不便,然后你懂的。普通人的存活率不超过0.5,说明基本上等于选择一个就等于放弃另外一个。

分析其他的数据和存活率的关系,由于代码一样就展示图:
在这里插入图片描述
在这里插入图片描述

性别影响真的很大

在这里插入图片描述

这篇关于暑期实训Python第十天,seaborn画图 --------<泰坦尼克号沉船>数据可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/213234

相关文章

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超