【量化交易笔记】5.SMA,EMA 和WMA区别

2023-10-14 16:20

本文主要是介绍【量化交易笔记】5.SMA,EMA 和WMA区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

股票中的SMA,EMA和WMA是常用的技术分析指标。这些指标基于历史股价计算得出,可以帮助投资者了解股票的趋势,为决策提供依据。虽然它们都是平均值算法,但它们之间还是有一些区别的。

SMA 简单移动平均线(Simple Moving Average)

SMA是移动平均线的简称,全称是简单移动平均线(Simple Moving Average)。它是历史股价平均值的简单算术平均数。计算SMA,只需要将一段时间内股票收盘价的总和除以这段时间内的交易日数。

例如,计算过去5天的SMA,只需要将这5天的股票收盘价相加,再除以5,即可得出SMA。

SMA是一种较为简单的移动平均方式,经常被用于判断短期的股票趋势。由于SMA只是简单地考虑了过去一段时间的股票价格,因此它会被短期价格波动所影响,因此可能不如其他平均值算法准确。

EMA 指数移动平均线(Exponential Moving Average)

EMA是指数移动平均线(Exponential Moving Average)。与SMA不同,EMA并不是简单的日平均数,而是考虑到股票价格的整体趋势,即将较大的权重放在了最近的股票价格上。

在EMA的计算中,最近的股票价格会得到较高的权重,而较早的股票价格的权重则会下降。计算过程中需要指定EMA的时间周期,通常包括12天和26天等。

对于EMA的计算,需要先计算出一个起始的EMA值。这可以通过计算一段时间内的SMA来得到,然后用下面的计算公式去计算:

当前EMA值 = ((当前收盘价 - 上一个EMA值) * 平滑指数)+ 上一个EMA值
平滑指数可以通过下面的方法来计算:
平滑指数 = 2 /(时间周期 + 1)
EMA的计算方法相对于SMA更为复杂,但它可以更好地反映当前的市场趋势。
y t = x t + ( 1 − α ) x t − 1 + ( 1 − α ) 2 x t − 2 + . . . + ( 1 − α ) t x 0 1 + ( 1 − α ) + ( 1 − α ) 2 + . . . + ( 1 − α ) t y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ... + (1 - \alpha)^t x_0}{1 + (1 - \alpha) + (1 - \alpha)^2 + ... + (1 - \alpha)^t} yt=1+(1α)+(1α)2+...+(1α)txt+(1α)xt1+(1α)2xt2+...+(1α)tx0
其中, t t t 为窗口大小, α \alpha α 为平滑因子( 0 < α ≤ 1 0 \lt \alpha \leq 1 0<α1 可根据公式计算,如 2 / ( 1 + t ) 2/(1+ t ) 2/(1+t),也可自定义), ( 1 − α ) i (1- \alpha) ^ i (1α)i 为呈指数增加的权重,期数离预测时刻越近权重越大。

y 0 = x 0 y t = ( 1 − α ) y t − 1 + α x t , \begin{split}\begin{split} y_0 &= x_0\\ y_t &= (1 - \alpha) y_{t-1} + \alpha x_t, \end{split}\end{split} y0yt=x0=(1α)yt1+αxt,

# 直接用 Pandas 的ewm 函数
pandas.ewm(span=n)

WMA 加权移动平均线(Weighted Moving Average)

WMA是加权移动平均线(Weighted Moving Average),它是一种考虑过去时间内价格变化和波动的Moving Average方式。与EMA类似,WMA也是将较大的权重放在较近的数据上,但与EMA不同的是,它使用的是带权的平均算法。

在WMA中,每个数据都被通过给定的权重,然后再求和得到加权平均值。通常情况下,较近的数据会有较大的权重,而较远的数据权重会下降,WMA有助于平滑股票价格的波动,并根据相应的趋势给出合适的建议。

WMA的计算也需要指定一个时间周期,并且需要先计算出一段时间内的总权值,用下面的公式计算总权值后,再使用上面的加权平均公式计算WMA:

保存总权值 = 从 1 开始的周期数 * 周期内每个数据的权重之和
每个数据的权重 = (当前周期数 + 1)- 当前数据的位置
WMA是比SMA更为准确的一种移动平均计算方法,但它的计算也更为复杂。

W M A t ( n ) = w 1 x t + w 2 x t − 1 + . . . + w n − 1 x t − n + 2 + w n x t − n + 1 w 1 + w 2 + . . . + w n WMA_t(n) = \frac{w_1x_t + w_2x_{t-1} + ... + w_{n-1}x_{t-n+2} +w_nx_{t-n+1} }{w_1+w_2+ ... + w_n } WMAt(n)=w1+w2+...+wnw1xt+w2xt1+...+wn1xtn+2+wnxtn+1

其中, n n n为窗口大小, W M A t WMA_t WMAt为t时刻的移动平均值。

技术分析中,权重系数为n~0,即最近一个数值的权重为n,次近的为n-1,如此类推,直到0。
W M A t ( n ) = n x t + ( n − 1 ) x t − 1 + . . . + 2 x t − n + 2 + x t − n + 1 n + ( n − 1 ) + . . . + 2 + 1 WMA_t(n) = \frac{nx_t + (n-1)x_{t-1} + ... + 2x_{t-n+2} +x_{t-n+1} }{n+(n-1)+ ... + 2+1 } WMAt(n)=n+n1)+...+2+1nxt+(n1)xt1+...+2xtn+2+xtn+1

def WMA(close, n):weights = np.array(range(1, n+1))sum_weights = np.sum(weights)res = close.rolling(window=n).apply(lambda x: np.sum(weights*x) / sum_weights, raw=False)return res#或
def WMA(close, n):return close.rolling(window=n).apply(lambda x: x[::-1].cumsum().sum() * 2 / n / (n + 1))

方法对比分析

从权重思维来看,三种方法都可以认为是加权平均。SMA:权重系数一致;WMA:权重系数随时间间隔线性递减;EMA:权重系数随时间间隔指数递减。 如下图:
下面以 t=30 作图

WMA 是 线性递减,EMA是指数递减

结论

三种平均值算法各有优缺点,你需要根据你的股票市场分析需要及实际情况来决定使用哪种算法。如果你的分析需要考虑。EMA,WMA 即 远离当前时间,影响较小,前一天权重大影响最大。因此在股票很多指标上都用EMA 来代替SMA,如MACD等。

这篇关于【量化交易笔记】5.SMA,EMA 和WMA区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/211673

相关文章

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

分辨率三兄弟LPI、DPI 和 PPI有什么区别? 搞清分辨率的那些事儿

《分辨率三兄弟LPI、DPI和PPI有什么区别?搞清分辨率的那些事儿》分辨率这个东西,真的是让人又爱又恨,为了搞清楚它,我可是翻阅了不少资料,最后发现“小7的背包”的解释最让我茅塞顿开,于是,我... 在谈到分辨率时,我们经常会遇到三个相似的缩写:PPI、DPI 和 LPI。虽然它们看起来差不多,但实际应用

GORM中Model和Table的区别及使用

《GORM中Model和Table的区别及使用》Model和Table是两种与数据库表交互的核心方法,但它们的用途和行为存在著差异,本文主要介绍了GORM中Model和Table的区别及使用,具有一... 目录1. Model 的作用与特点1.1 核心用途1.2 行为特点1.3 示例China编程代码2. Tab

Nginx指令add_header和proxy_set_header的区别及说明

《Nginx指令add_header和proxy_set_header的区别及说明》:本文主要介绍Nginx指令add_header和proxy_set_header的区别及说明,具有很好的参考价... 目录Nginx指令add_header和proxy_set_header区别如何理解反向代理?proxy

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

Spring中@RestController和@Controller的使用及区别

《Spring中@RestController和@Controller的使用及区别》:本文主要介绍Spring中@RestController和@Controller的使用及区别,具有很好的参考价... 目录Spring中@RestController和@Controller使用及区别1. 基本定义2. 使

Qt 中 isHidden 和 isVisible 的区别与使用小结

《Qt中isHidden和isVisible的区别与使用小结》Qt中的isHidden()和isVisible()方法都用于查询组件显示或隐藏状态,然而,它们有很大的区别,了解它们对于正确操... 目录1. 基础概念2. 区别清见3. 实际案例4. 注意事项5. 总结1. 基础概念Qt 中的 isHidd

Spring、Spring Boot、Spring Cloud 的区别与联系分析

《Spring、SpringBoot、SpringCloud的区别与联系分析》Spring、SpringBoot和SpringCloud是Java开发中常用的框架,分别针对企业级应用开发、快速开... 目录1. Spring 框架2. Spring Boot3. Spring Cloud总结1. Sprin