用python实现Pure Pursuit控制算法

2023-10-14 14:38

本文主要是介绍用python实现Pure Pursuit控制算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前对Pure Pursuit控制算法作了介绍,并用Matlab进行了仿真,具体参考:https://blog.csdn.net/Ronnie_Hu/article/details/115817922?spm=1001.2014.3001.5501。

下面改用python对其进行仿真,同样跟踪一个圆形轨迹,具体代码如下:

import numpy as np
import matplotlib.pyplot as plt
import math# set figure size
plt.figure(figsize=(8, 8))# define UGV class
class UGV_model:def __init__(self, x0, y0, theta0, v0, L, T):self.x = x0self.y = y0self.theta = theta0self.v = v0self.l = Lself.dt = Tdef update(self,deltat):dx_vs_dt = self.v*np.cos(self.theta) dy_vs_dt = self.v*np.sin(self.theta)dtheta_vs_dt = self.v*np.tan(deltat)/self.lself.x += dx_vs_dt*self.dtself.y += dy_vs_dt*self.dtself.theta += dtheta_vs_dt*self.dtdef draw(self):plt.scatter(self.x, self.y, color='r')plt.axis([-20, 20, -20, 20])plt.grid(linestyle=":")# set circle reference trajectory
refer_traj = np.ones((200,2))
for k in range(200):refer_traj[k,0] = 15*math.cos(2*np.pi/200*k)refer_traj[k,1] = 15*math.sin(2*np.pi/200*k)# draw reference trajectory
plt.plot(refer_traj[:,0], refer_traj[:,1], color='b')# an UGV instance
ugv = UGV_model(0, 0, np.pi/2, 1.6, 2.6, 0.5)# define lookahead
ld = ugv.v*2# Pure Pursuit algorithm
flag = 0for i in range(200):vehicle_state = np.zeros(2)vehicle_state[0] = ugv.xvehicle_state[1] = ugv.ycnt = 0;min_ds = 100000000; Q = []for m in range(flag,200):deltax,deltay = refer_traj[m] - vehicle_stateds = math.sqrt(deltax*deltax+deltay*deltay)if(ds >= ld):temp = [ds,refer_traj[m,0],refer_traj[m,1],m]Q.append(temp)cnt += 1else:passpass# catch the nearest reference pointfor j in range(cnt):if(Q[j][0]<min_ds):flag = Q[j][3]min_ds = Q[j][0]            else:passpassdx,dy = refer_traj[flag] - vehicle_statealpha = math.atan2(dy,dx) - ugv.thetadelta = math.atan(2*np.sin(alpha)*ugv.l/min_ds)ugv.update(delta)ugv.draw()# pursuit the end reference pointif(flag==199):breakelse:pass

仿真的结果如下图所示,蓝色为参考轨迹、红色为跟踪轨迹。从上面的代码不难看出,仿真中采用了“走捷径”的方法,即每次在剩余跟踪点中挑选距离最近的点来跟踪

下面的代码就没有采取“走捷径”的方法。

import numpy as np
import matplotlib.pyplot as plt
import math# set figure size
plt.figure(figsize=(8, 8))# define UGV class
class UGV_model:def __init__(self, x0, y0, theta0, v0, L, T):self.x = x0self.y = y0self.theta = theta0self.v = v0self.l = Lself.dt = Tdef update(self,deltat):dx_vs_dt = self.v*np.cos(self.theta) dy_vs_dt = self.v*np.sin(self.theta)dtheta_vs_dt = self.v*np.tan(deltat)/self.lself.x += dx_vs_dt*self.dtself.y += dy_vs_dt*self.dtself.theta += dtheta_vs_dt*self.dtdef draw(self):plt.scatter(self.x, self.y, color='r')plt.axis([-20, 20, -20, 20])plt.grid(linestyle=":")# set circle reference trajectory
refer_traj = np.ones((200,2))
for k in range(200):refer_traj[k,0] = 15*math.cos(2*np.pi/200*k)refer_traj[k,1] = 15*math.sin(2*np.pi/200*k)# draw reference trajectory
plt.plot(refer_traj[:,0], refer_traj[:,1], color='b')# an UGV instance
ugv = UGV_model(0, 0, np.pi/2, 1.6, 2.6, 0.5)# define lookahead
ld = ugv.v*2# Pure Pursuit algorithm
flag = 0for i in range(200):vehicle_state = np.zeros(2)vehicle_state[0] = ugv.xvehicle_state[1] = ugv.ycnt = 0;Q = []for m in range(flag,200):ds = np.linalg.norm(vehicle_state-refer_traj[m])if(ds >= ld):flag = mbreakelse:passpassds = np.linalg.norm(vehicle_state-refer_traj[flag])dx,dy = refer_traj[flag] - vehicle_statealpha = math.atan2(dy,dx) - ugv.thetadelta = math.atan(2*np.sin(alpha)*ugv.l/ld)ugv.update(delta)ugv.draw()# pursuit the end reference pointif(flag==199):breakelse:pass

仿真结果如下图所示,蓝色为参考轨迹、红色为跟踪轨迹。

不难看出,在计算前轮转角的时候,反正切运算的分母用的是前视距离,而不是实际距离,如果改用实际距离,跟踪会失败,如下图所示。

这篇关于用python实现Pure Pursuit控制算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/211159

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核