HMM学习二:Baum-Welch算法详解(学习算法)

2023-10-14 07:50
文章标签 算法 学习 详解 welch hmm baum

本文主要是介绍HMM学习二:Baum-Welch算法详解(学习算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一,前言

在上篇博文中,我们学习了隐马尔可夫模型的概率计算问题,如果对隐马尔可夫模型还不胜了解的话,可参看博文HMM学习(一)。

学习问题

隐马尔可夫模型的学习,根据训练数据是包括观测序列和对应的状态序列还是只有观测序列,可以分别由监督学习与非监督学习实现。本节首先介绍监督学习算法,而后介绍非监督学习算法——Baum-Welch算法(也就是EM算法)。

监督学习问题
假设已给训练数据包含S个长度相同的观测序列和对应的状态序列 ( O 1 , I 1 ) , ( O 2 , I 2 ) , . . . , ( O S , I S ) ( O 1 , I 1 ) , ( O 2 , I 2 ) , . . . , ( O S , I S ) {(O_1,I_1),(O_2,I_2),...,(O_S,I_S)}{(O_1,I_1),(O_2,I_2),...,(O_S,I_S)} (O1,I1),(O2,I2),...,(OS,IS)(O1,I1),(O2,I2),...,(OS,IS),那么可以利用极大似然估计方法来估计隐马尔可夫模型的参数,具体方法如下。

1.转移概率 a i j a i j a_{ij}a_{ij} aijaij的估计

设样本中时刻t处于状态i时刻t+1转移到j的频数为 A i j A i j A_{ij}A_{ij} AijAij,那么状态转移概率为 a i j a_{ij} aij的估计是

在这里插入图片描述
直接根据给定的O和I进行频数统计,在海藻模型中,我们可以统计100天前的天气转移次数,如在100天内,统计从sunny -> sunny 的次数,sunny -> cloudy 的次数,sunny - > rainy的次数,分别记作 a 1 , a 2 , a 3 a_1,a_2,a_3 a1,a2,a3,那么 a s u n n y − > a n y s t a t e a_{sunny−>any state} asunny>anystate=[ a 1 a 1 + a 2 + a 3 \frac{a_1}{a_1+a_2+a_3} a1+a2+a3a1, a 2 a 1 + a 2 + a 3 \frac{a_2}{a_1+a_2+a_3} a1+a2+a3a2, a 3 a 1 + a 2 + a 3 ] \frac{a_3}{a_1+a_2+a_3]} a1+a2+a3]a3。因此,状态转移矩阵可以根据给定的隐藏序列 I I I计算得出。

2.观测概率

这篇关于HMM学习二:Baum-Welch算法详解(学习算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/209135

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof