本文主要是介绍【LeetCode高频SQL50题-基础版】打卡第7天:第36~40题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
文章目录
- 【LeetCode高频SQL50题-基础版】打卡第7天:第36~40题
- ⛅前言
- 按分类统计薪水
- 🔒题目
- 🔑题解
- 上级经理已离职的公司员工
- 🔒题目
- 🔑题解
- 换座位
- 🔒题目
- 🔑题解
- 电影评分
- 🔒题目
- 🔑题解
- 餐馆营业额变化增长
- 🔒题目
- 🔑题解
【LeetCode高频SQL50题-基础版】打卡第7天:第36~40题
⛅前言
在这个博客专栏中,我将为大家提供关于 LeetCode 高频 SQL 题目的基础版解析。LeetCode 是一个非常受欢迎的编程练习平台,其中的 SQL 题目涵盖了各种常见的数据库操作和查询任务。对于计算机科班出身的同学来说,SQL 是一个基础而又重要的技能。不仅在面试过程中经常会遇到 SQL 相关的考题,而且在日常的开发工作中,掌握 SQL 的能力也是必备的。
本专栏的目的是帮助读者掌握 LeetCode 上的高频 SQL 题目,并提供对每个题目的解析和解决方案。我们将重点关注那些经常出现在面试中的题目,并提供一个基础版的解法,让读者更好地理解问题的本质和解题思路。无论你是准备找工作还是提升自己的技能,在这个专栏中,你可以学习到很多关于 SQL 的实践经验和技巧,从而更加深入地理解数据库的操作和优化。
我希望通过这个专栏的分享,能够帮助读者在 SQL 的领域里取得更好的成绩和进步。如果你对这个话题感兴趣,那么就跟随我一起,开始我们的 LeetCode 高频 SQL 之旅吧!
- 博客主页💖:知识汲取者的博客
- LeetCode高频SQL100题专栏🚀:LeetCode高频SQL100题_知识汲取者的博客-CSDN博客
- Gitee地址📁:知识汲取者 (aghp) - Gitee.com
- 题目来源📢:高频 SQL 50 题(基础版) - 学习计划 - 力扣(LeetCode)全球极客挚爱的技术成长平台
按分类统计薪水
🔒题目
题目来源:1907.按分类统计薪水
🔑题解
- 考察知识点:
union
、sum
分析:这一题的难点(当然这个难点是对于我而言的,可能对你而言很简单😄)在于对于将不同列名映射到同一个列名中来,也就是 category 这一列,居然是直接使用一个字符串常量来实现映射,平常没怎么见过这种写法,所以一时也没有想到,其实把这一点想到了应该会很简单,因为 union
还是很常见的
1)查询出处于 Low Salary 的账号数量
select 'Low Salary' category, sum(if(income < 20000, 1, 0)) accounts_count
from Accounts;
| category | accounts_count |
| ---------- | -------------- |
| Low Salary | 1 |
2)查询出处于 Average Salary 的账号数量
select 'Average Salary' category, sum(if(income between 20000 and 50000, 1, 0)) accounts_count
from Accounts;
当然这里也可以使用 <= 和 >= 加一个 and 进行连接,用于替代 between and
| category | accounts_count |
| -------------- | -------------- |
| Average Salary | 0 |
3)查询出处于 High Salary 的账号数量
select 'High Salary' category, sum(income > 50000) accounts_count
from Accounts;
| category | accounts_count |
| ----------- | -------------- |
| High Salary | 3 |
4)使用 union 将前面所有的结果集进行合并
select 'Low Salary' category, sum(if(income < 20000, 1, 0)) accounts_count
from Accounts
union
select 'Average Salary' category, sum(if(income between 20000 and 50000, 1, 0)) accounts_count
from Accounts
union
select 'High Salary' category, sum(income > 50000) accounts_count
from Accounts;
温馨提示:这里更加推荐使用 union all
,性能更高,通过提交测试可以发现,使用 union 普遍在 5%~20%,union all 普遍在 50%~70%
这里也不仅仅只能使用 sum 函数,也可以使用 count 函数
select 'Low Salary' category, count(*) accounts_count
from Accounts
where income < 20000
union all
select 'Average Salary' category, count(*) accounts_count
from Accounts
where income between 20000 and 50000
union all
select 'High Salary' category, count(*) accounts_count
from Accounts
where income > 50000;
经过提交测试,发现这种写法的性能更高,普遍高达 90% 以上
上级经理已离职的公司员工
🔒题目
题目来源:1978.上级经理已离职的公司员工
🔑题解
- 考察知识点:
分析:主要分为三步
- 查询处薪资小于30000的员工
- 查询出所有在职员工的id
- 判断小于30000的员工的 manger_id 是否在 2 所查询的结果集中
1)查询处薪资小于30000的员工
select *
from Employees
where salary < 30000;
| employee_id | name | manager_id | salary |
| ----------- | ------ | ---------- | ------ |
| 1 | Kalel | 11 | 21241 |
| 11 | Joziah | 6 | 28485 |
2)查询出所有在职员工的 id
select distinct employee_id
from Employees;
| employee_id |
| ----------- |
| 3 |
| 12 |
| 13 |
| 1 |
| 9 |
| 11 |
3)判断小于30000的员工的 manger_id 是否在 2 所查询的结果集中
select employee_id
from Employees
where salary < 30000 and manager_id not in (select distinct employee_idfrom Employees
)
order by employee_id asc;
换座位
🔒题目
题目来源:626.换座位
🔑题解
- 考察知识点:
mod
、
分析:陷入了思维定式,我下意识的选择奖两个记录像冒泡排序一样进行两两交换,结果发现自己并不知道如何实现。后面看了题解,发现居然就是通过修改id即可实现两两交换😆,一下没想到,看完之后我就悟了,具体的实现思路如下:
- id为奇数的统一加一
- id为偶数的统一都减一
- 如果记录总数为奇数,最后一条记录的id不需要改变
解法一:自连接
1)第一步,先查询出记录的总数
select count(*) counts
from seat;
| counts |
| ------ |
| 5 |
2)将查询道的记录连接每条记录中
select *
from seat, (select count(*) counts from seat) seat_counts;
| id | student | counts |
| -- | ------- | ------ |
| 1 | Abbot | 5 |
| 2 | Doris | 5 |
| 3 | Emerson | 5 |
| 4 | Green | 5 |
| 5 | Jeames | 5 |
3)对上面查询出的结果集使用 case 对 id 进行判断,最后进行应该排序
select (casewhen mod(id, 2) != 0 and counts != id then id + 1 -- id为奇数并且不为最后一条记录when mod(id, 2) != 0 and counts = id then id -- id为奇数但为最后一条记录else id - 1 -- id为偶数end) id,student
from seat, (select count(*) counts from seat) seat_counts
order by id asc;
备注:上面的case when
结果全部可以由if
替代
解法二:子查询
解法一通过自连接将将总记录数添加到每一条记录上,然后进行查询,我们也可以不这些写,直接使用最大id数来判断是否是最后一条记录,这种写法可能效率没有那么高,因为每一行都需要去查询表的最大id
注意:不要使用max
函数去判断是否是最后一条记录,max聚合函数会将所有结果聚合为一条记录
错误写法:
select (casewhen mod(id, 2) != 0 and max(id) != id then id + 1 -- id为奇数并且不为最后一条记录when mod(id, 2) != 0 and max(id) = id then id -- id为奇数但为最后一条记录else id - 1 -- id为偶数end) id,student
from seat
order by id asc;
这样只会得到一条记录,因为max是遍历所有结果后
select (casewhen mod(id, 2) != 0 and (select max(id) from seat) != id then id + 1 -- id为奇数并且不为最后一条记录when mod(id, 2) != 0 and (select max(id) from seat) = id then id -- id为奇数但为最后一条记录else id - 1 -- id为偶数end) id,student
from seat
order by id asc;
解法三:使用窗口函数
select (casewhen mod(id, 2) != 0 and counts != id then id + 1 -- id为奇数并且不为最后一条记录when mod(id, 2) != 0 and counts = id then id -- id为奇数但为最后一条记录else id - 1 -- id为偶数end) id,student
from(select *, count(*) over() counts from seat) seat_counts
order by id asc;
电影评分
🔒题目
题目来源:1341.电影评分
🔑题解
- 考察知识点:
count
、sum
、union all
、month
、year
、子查询
、order by
、group by
、limit
分析:这一题的想要写出来比较简单,但是需要一步一步来,我写的这个SQL可能比较长,涉及到的知识点也比较多
主要思路如下所示:
- 查询出一个结果,查找评论电影数量最多的用户名
- 查询出第二个结果,查找在 February 2020 平均评分最高 的电影名称。如果出现平局,返回字典序较小的电影名称。
- 通过
union all
将两个结果聚合起来
1)查询出第一个结果,查找评论电影数量最多的用户名
select *, count(*) counts
from MovieRating mr left join Users u on mr.user_id = u.user_id
group by mr.user_id
order by counts desc, u.name asc;
| movie_id | user_id | rating | created_at | user_id | name | counts |
| -------- | ------- | ------ | ---------- | ------- | ------ | ------ |
| 1 | 1 | 3 | 2020-01-12 | 1 | Daniel | 3 |
| 1 | 2 | 4 | 2020-02-11 | 2 | Monica | 3 |
| 1 | 3 | 2 | 2020-02-12 | 3 | Maria | 2 |
| 1 | 4 | 1 | 2020-01-01 | 4 | James | 1 |
然后取第一个记录即可
select name results
from (select u.name, count(*) countsfrom MovieRating mr left join Users u on mr.user_id = u.user_idgroup by mr.user_idorder by counts desc, u.name asclimit 1) t1;
| results |
| ------- |
| Daniel |
2)查询出第二个结果
select m.title, sum(mr.rating)/count(*) average
from Movies m left join MovieRating mr on m.movie_id = mr.movie_id
where month(mr.created_at) = 2
group by m.movie_id
order by average desc, title asc
备注:其实这里的sum(mr.rating)/count(*)
可以直接由avg(mr.rating)
进行替换
| title | average |
| -------- | ------- |
| Frozen 2 | 3.5 |
| Joker | 3.5 |
| Avengers | 3 |
然后取第一条记录即可
select title results
from (select m.title, sum(mr.rating)/count(*) averagefrom Movies m left join MovieRating mr on m.movie_id = mr.movie_idwhere month(mr.created_at) = 2 and year(mr.created_at) = 2020group by m.movie_idorder by average desc, title asclimit 1) t2;
备注:这里的 month(mr.created_at) = 2 and year(mr.created_at) = 2020
可以直接替换为date_formate(created_at, '%Y-%m') = '2020-02'
| results |
| -------- |
| Frozen 2 |
3)将两个结果集进行合并
select name results
from (select u.name, count(*) countsfrom MovieRating mr left join Users u on mr.user_id = u.user_idgroup by mr.user_idorder by counts desc, u.name asclimit 1) t1
union all
select title results
from (select m.title, sum(mr.rating)/count(*) averagefrom Movies m left join MovieRating mr on m.movie_id = mr.movie_idwhere month(mr.created_at) = 2 and year(mr.created_at) = 2020group by m.movie_idorder by average desc, title asclimit 1) t2;
注意点:
- 这里一定要使用
union all
而不是union
,因为当电影名和用户名重叠时,union得到的记录只有一条 - 不要被示例数据给干扰了,真实的数据中并不都是2020年的,所以需要添加一个判断,只查询出2020年的
- 对于字符串类型的数据,如果使用
order by
默认就按照字典进行排序的
这里在提供一种使用窗口函数的解法
SELECT results
FROM (SELECT name AS results, RANK() OVER(ORDER BY COUNT(*) DESC, name) AS RANKINGFROM UsersINNER JOIN MovieRating USING(user_id)GROUP BY user_idUNION ALLSELECT title AS results, RANK() OVER(ORDER BY AVG(rating) DESC, title) AS RANKINGFROM MovieRatingINNER JOIN Movies USING(movie_id)WHERE DATE_FORMAT(created_at, '%Y-%m') = '2020-02'GROUP BY movie_id
) T
WHERE T.RANKING = 1
餐馆营业额变化增长
🔒题目
题目来源:1321.餐馆营业额变化增长
🔑题解
- 考察知识点:
子查询
、sum
、join
、group by
、order by
分析:这题难点在于筛选出前七天的数据,只要将这个点解决了,其实就不难了,其实就是子查询的灵活运用,通过构造出合适的临时表,才能够更方便的操作,主要有以下几步
- 通过自连接得到所有当前天前七天的顾客购买情况
- 过滤出没有前面不够七天的商品
- 分组,从第七天开始,没天商品的购买总价值、已经平均值
方法一:自连接
1)首先我们通过join
自连接查询出当前天开始前六天的用户,同时需要排除连续天数小于六天的
select *
from (select distinct visited_on from Customer) t1 join Customer t2 on datediff(t1.visited_on, t2.visited_on) between 0 and 6
where t1.visited_on >= (select min(visited_on) from Customer ) + 6
order by t1.visited_on;
备注:这里的order by只是为了更好查看结果集,最终的结果可以去掉这个order by,没有必要耗费多余的资源去进行一个排序
+------------+-------------+---------+------------+--------+
| visited_on | customer_id | name | visited_on | amount |
+------------+-------------+---------+------------+--------+
| 2019-01-07 | 1 | Jhon | 2019-01-01 | 100 |
| 2019-01-07 | 2 | Daniel | 2019-01-02 | 110 |
| 2019-01-07 | 3 | Jade | 2019-01-03 | 120 |
| 2019-01-07 | 4 | Khaled | 2019-01-04 | 130 |
| 2019-01-07 | 5 | Winston | 2019-01-05 | 110 |
| 2019-01-07 | 6 | Elvis | 2019-01-06 | 140 |
| 2019-01-07 | 7 | Anna | 2019-01-07 | 150 |
| 2019-01-08 | 2 | Daniel | 2019-01-02 | 110 |
| 2019-01-08 | 3 | Jade | 2019-01-03 | 120 |
| 2019-01-08 | 4 | Khaled | 2019-01-04 | 130 |
| 2019-01-08 | 5 | Winston | 2019-01-05 | 110 |
| 2019-01-08 | 6 | Elvis | 2019-01-06 | 140 |
| 2019-01-08 | 7 | Anna | 2019-01-07 | 150 |
| 2019-01-08 | 8 | Maria | 2019-01-08 | 80 |
| 2019-01-09 | 3 | Jade | 2019-01-03 | 120 |
| 2019-01-09 | 4 | Khaled | 2019-01-04 | 130 |
| 2019-01-09 | 5 | Winston | 2019-01-05 | 110 |
| 2019-01-09 | 6 | Elvis | 2019-01-06 | 140 |
| 2019-01-09 | 7 | Anna | 2019-01-07 | 150 |
| 2019-01-09 | 8 | Maria | 2019-01-08 | 80 |
| 2019-01-09 | 9 | Jaze | 2019-01-09 | 110 |
| 2019-01-10 | 4 | Khaled | 2019-01-04 | 130 |
| 2019-01-10 | 5 | Winston | 2019-01-05 | 110 |
| 2019-01-10 | 6 | Elvis | 2019-01-06 | 140 |
| 2019-01-10 | 7 | Anna | 2019-01-07 | 150 |
| 2019-01-10 | 8 | Maria | 2019-01-08 | 80 |
| 2019-01-10 | 9 | Jaze | 2019-01-09 | 110 |
| 2019-01-10 | 1 | Jhon | 2019-01-10 | 130 |
| 2019-01-10 | 3 | Jade | 2019-01-10 | 150 |
+------------+-------------+---------+------------+--------+
2)最难想到的是第一步,其实只要得到了上面那张表,我们接下来的操作就会简单很多。我们只需要利用聚合函数对上面的结果进行一个聚合,然后求取平均值即可
select visited_on, sum(amount) amount, round(sum(amount) / 7, 2) average_amount
from(select t1.visited_on, t2.amountfrom (select distinct visited_on from Customer) t1 join Customer t2 on datediff(t1.visited_on, t2.visited_on) between 0 and 6where t1.visited_on >= (select min(visited_on) from Customer ) + 6
) t
group by visited_on
order by visited_on asc;
方法二:窗口函数
这里如果使用窗口函数,可能会显得很简单,比那个分组要好理解的多😄,但是唯一的缺点就是MySQL的版本至少得是8.0
select *, dense_rank() over(order by visited_on) `row_number`,sum(amount) over(order by visited_on range interval 6 day preceding) total
from Customer;
| customer_id | name | visited_on | amount | row_number | total |
| ----------- | ------- | ---------- | ------ | ---------- | ----- |
| 1 | Jhon | 2019-01-01 | 100 | 1 | 100 |
| 2 | Daniel | 2019-01-02 | 110 | 2 | 210 |
| 3 | Jade | 2019-01-03 | 120 | 3 | 330 |
| 4 | Khaled | 2019-01-04 | 130 | 4 | 460 |
| 5 | Winston | 2019-01-05 | 110 | 5 | 570 |
| 6 | Elvis | 2019-01-06 | 140 | 6 | 710 |
| 7 | Anna | 2019-01-07 | 150 | 7 | 860 |
| 8 | Maria | 2019-01-08 | 80 | 8 | 840 |
| 9 | Jaze | 2019-01-09 | 110 | 9 | 840 |
| 1 | Jhon | 2019-01-10 | 130 | 10 | 1000 |
| 3 | Jade | 2019-01-10 | 150 | 10 | 1000 |
select distinct visited_on, total amount, round(total/7, 2) average_amount
from(select visited_on, dense_rank() over(order by visited_on) `row_number`,sum(amount) over(order by visited_on range interval 6 day preceding) totalfrom Customer) t
where `row_number` > 6
order by visited_on asc;
注意:上面这条SQL只能对于连续日期可以通过,如果日期不连续就无法通过,这个题目是有问题的,题目中说
也就是说每天都有一名顾客,这就说明日期必定是连续的,但是经过提交发现有一些示例数据并不是连续的,也就是说明题目的描述是有问题的!!!
所以我们需要对上面的SQL进行一个调整,既然无法使用时间间隔表达式,我们就可以换一种思路,直接利用datediff
函数来实现过滤
select distinct visited_on, total amount, round(total/7, 2) average_amount
from(select visited_on, dense_rank() over(order by visited_on) `row_number`,sum(amount) over(order by visited_on range interval 6 day preceding) totalfrom Customer) t
where datediff(visited_on, (select min(visited_on) from Customer)) >= 6
order by visited_on asc;
方法三:通用表达式
分析:略……今天累了,后面补上讲解吧
关于通用表达式可以参考博主的这篇文章:MySQL8新特性通用表达式详解
with t as (select visited_on, sum(amount) amountfrom Customer group by visited_on)
select t1.visited_on, sum(t2.amount) amount,round(sum(t2.amount)/7, 2) average_amount
from t t1, t t2
where datediff(t1.visited_on, t2.visited_on) between 0 and 6
group by t1.visited_on
having datediff(visited_on, (select min(visited_on) from Customer)) >= 6
order by visited_on asc
这篇关于【LeetCode高频SQL50题-基础版】打卡第7天:第36~40题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!