本文主要是介绍python爬取boss直聘职位数据,并保存到本地,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
代码环境
- python 3.7
- pip 19.0.3
主要引用的第三方库
- requests,用于模拟http/https请求
- 安装:
pip install requests
- 文档: requests中文文档
- 安装:
- beautifulsoup4,用于解析网页,得出我们想要的内容。
- 安装:
pip install beautifulsoup4
- 文档: bs4中文文档
- 安装:
- xlwt,将爬到的结果以Excel的形式保存到本地
- 安装:
pip install xlwt
- api: xlwt api
- 安装:
打开网页
首先打开boss直聘官网,选择一个地点,然后输入关键字,点击搜索,这里以深圳、python为例。
观察地址栏URL,可以发现有四个参数,分别是query,city,industry和position,query和city很明显是我输入的python和选择的地点深圳;而industry和position也就是公司行业和职位类型,这里没有选择这两项。
分析网页
F12打开开发者工具
每一条职位信息都在一个<li>标签中,<li>标签下的<div class=“job-primary”>就是我们要找的内容。
代码
-
获取城市编码
url中的city=101280600,显示的是深圳,说明城市名有一个对应的编号,F12 点击Network选中XHR,有一个city.json
import requests
from bs4 import BeautifulSoup
import json
import xlwt
import time
import randomuser_agent_list = ["Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36","Mozilla/5.0 (Windows NT 10.0; …) Gecko/20100101 Firefox/61.0","Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.186 Safari/537.36","Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.62 Safari/537.36","Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/45.0.2454.101 Safari/537.36","Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)","Mozilla/5.0 (Macintosh; U; PPC Mac OS X 10.5; en-US; rv:1.9.2.15) Gecko/20110303 Firefox/3.6.15"
]headers = {"user-agent": random.choice(user_agent_list)}# 获取指定城市的编码
def get_city_code(city_name):response = requests.get("https://www.zhipin.com/wapi/zpCommon/data/city.json")contents = json.loads(response.text)cities = contents["zpData"]["hotCityList"]city_code = contents["zpData"]["locationCity"]["code"]for city in cities:if city["name"] == city_name:city_code = city["code"]return city_codedef get_url(query="", city="", industry="", position="", page=1):base_url = "https://www.zhipin.com/job_detail/?query={}&city={}&industry={}&position={}&page={}"urls = []url = base_url.format(query, city, industry, position, page)response = requests.get(url, headers=headers)soup = BeautifulSoup(response.text, "lxml")page_list = soup.find("div", "page").find_all("a")urls.append(url)while page_list[len(page_list) - 1]["href"] != "javascript:;":page += 1url = base_url.format(query, city, industry, position, page)urls.append(url)response = requests.get(url, headers=headers)soup = BeautifulSoup(response.text, "lxml")page_list = soup.find("div", "page").find_all("a")return urlsdef get_html(url):response = requests.get(url, headers=headers)return response.textdef job_info(job_name, company, industry, finance, staff_number, salary, site, work_experience, education_bak, job_desc):return {"job_name": job_name,"company": company,"industry": industry,"finance": finance,"staff_number": staff_number,"salary": salary,"site": site,"work_experience": work_experience,"education_bak": education_bak,"job_desc": job_desc}def get_job_desc(jid, lid):url = "https://www.zhipin.com/wapi/zpgeek/view/job/card.json?jid={}&lid={}"response = requests.get(url.format(jid, lid), headers=headers)html = json.loads(response.text)["zpData"]["html"]soup = BeautifulSoup(html, "lxml")desc = soup.find("div", "detail-bottom-text").get_text()return descdef get_content(html):bs = BeautifulSoup(html, 'lxml')contents = []for info in bs.find_all("div", "job-primary"):job_name = info.find("div", "job-title").get_text()company = info.find("div", "company-text").a.get_text()jid = info.find("div", "info-primary").a["data-jid"]lid = info.find("div", "info-primary").a["data-lid"]desc = get_job_desc(jid, lid)texts = [text for text in info.find("div", "info-primary").p.stripped_strings]site = texts[0]work_exp = texts[1]edu_bak = texts[2]salary = info.span.get_text()companies = [text for text in info.find("div", "company-text").p.stripped_strings]industry = companies[0]if len(companies) > 2:finance = companies[1]staff_num = companies[2]else:finance = Nonestaff_num = companies[1]contents.append(job_info(job_name, company, industry, finance, staff_num, salary, site, work_exp, edu_bak, desc))time.sleep(1)return contentsdef save_data(content, city, query):file = xlwt.Workbook(encoding="utf-8", style_compression=0)sheet = file.add_sheet("job_info", cell_overwrite_ok=True)sheet.write(0, 0, "职位名称")sheet.write(0, 1, "公司名称")sheet.write(0, 2, "行业")sheet.write(0, 3, "融资情况")sheet.write(0, 4, "公司人数")sheet.write(0, 5, "薪资")sheet.write(0, 6, "工作地点")sheet.write(0, 7, "工作经验")sheet.write(0, 8, "学历要求")sheet.write(0, 9, "职位描述")for i in range(len(content)):sheet.write(i+1, 0, content[i]["job_name"])sheet.write(i+1, 1, content[i]["company"])sheet.write(i+1, 2, content[i]["industry"])sheet.write(i+1, 3, content[i]["finance"])sheet.write(i+1, 4, content[i]["staff_number"])sheet.write(i+1, 5, content[i]["salary"])sheet.write(i+1, 6, content[i]["site"])sheet.write(i+1, 7, content[i]["work_experience"])sheet.write(i+1, 8, content[i]["education_bak"])sheet.write(i+1, 9, content[i]["job_desc"])file.save(r'c:\projects\{}_{}.xls'.format(city, query))def main():city_name = "深圳"city = get_city_code(city_name)query = "python"urls = get_url(query=query, city=city)contents = []for url in urls:html = get_html(url)content = get_content(html)contents += contenttime.sleep(5)save_data(contents, city_name, query)if __name__ == '__main__':main()
这篇关于python爬取boss直聘职位数据,并保存到本地的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!