【故障诊断】基于FCM模糊聚类算法实现轴承故障诊断附Matlab代码

2023-10-13 07:10

本文主要是介绍【故障诊断】基于FCM模糊聚类算法实现轴承故障诊断附Matlab代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

⛄ 内容介绍

基于FCM(Fuzzy C-Means)糊聚类算法实现轴承故障诊断可以按照以下步骤进行:

  1. 数据收集:收集轴承工作时不同状态下的振动信号数据。这些数据应包括正常工作状态和各种故障状态的振动信号。

  2. 特征提取:从振动信号中提取有代性的特征参数。这些特征可以包括时域特征(差、峰峰值等)、频域特征(如频谱特征、统计特征等)以及其他与轴承故障相关的特征。

  3. 数据预处理:对提取的特征进行归一化或标准化处理,以消除不同特征之间的量纲差异,确保数据在相同的尺度范围内。

  4. 初始化聚类参数:设置初始聚类的数量和隶属度矩阵的初始值。在FCM算法中,需要指定聚类的个数以及隶属度的初始分布。

  5. 运用FCM算法:将处理过的特征数据输入到FCM算法中,迭代更新隶属度矩阵和聚类中心,直至满足停止准则(如隶属度变于某个阈值或达到最大迭代次数)。

6.隶属度矩阵,划分数据点到不同的聚类中心,将其归类为不同的轴承故障类型。

  1. 故障诊断与分析:对于新的未知样本,基于估的隶属度,可以诊断出其可能的故障类型。也可以分析各个故障类别所对应的特征模式,从而对不同故障状态进行辨识和分析。

需要注意的是,FCM算法属于一种启发式聚类算法,在实际应用中的效果还需结合实际数据和问题进行验证和调整。此外,应选择合适的聚类数量、隶属度更新规则和迭代停止准则。

⛄ 部分代码

clear allclcball=load ('ball.mat');              inner=load ('inner.mat');outer=load ('outer.mat') ;  outer1=load ('outer1.mat') ;normal=load('normal.mat');inner1=load('inner1.mat');ball1=load ('ball1.mat');ball_names = fieldnames(ball);       inner_names = fieldnames(inner);outer_names = fieldnames(outer);outer_names1 = fieldnames(outer1);normal_names = fieldnames(normal);inner_names1 = fieldnames(inner1);ball_names1 = fieldnames(ball1);ball_data=ball.(ball_names{1});      inner_data=inner.(inner_names{1});outer_data=outer.(outer_names{1});outer_data1=outer1.(outer_names1{1});normal_data=normal.(normal_names{1});inner_data1=inner1.(inner_names1{1});ball_data1=ball1.(ball_names1{1}); numPoint=4096;numExample=100;n=6;BearingFeature1=ExteactFeature(normal_data,numPoint,numExample,n);BearingFeature4=ExteactFeature(ball_data,numPoint,numExample,n);BearingFeature2=ExteactFeature(inner_data,numPoint,numExample,n);BearingFeature6=ExteactFeature(outer_data,numPoint,numExample,n);BearingFeature3=ExteactFeature(inner_data1,numPoint,numExample,n);BearingFeature5=ExteactFeature(ball_data1,numPoint,numExample,n);BearingFeature7=ExteactFeature(outer_data1,numPoint,numExample,n);K=[1,4,21,6,12,9,7,15,18,3,14,17,10,11,8,20,5,13,16,19,2];K_J=[1,4,21,6,12,3,9,15,18,7,14,17,10,11,8,5,20,2,13,16,19];fg=K(1:7);SelectFeature1=BearingFeature1(fg,:);SelectFeature2=BearingFeature2(fg,:);SelectFeature3=BearingFeature3(fg,:);SelectFeature4=BearingFeature4(fg,:);SelectFeature5=BearingFeature5(fg,:);SelectFeature6=BearingFeature6(fg,:);SelectFeature7=BearingFeature7(fg,:);input=[SelectFeature1,SelectFeature2,SelectFeature3,SelectFeature4,SelectFeature5,SelectFeature6,SelectFeature7]'; for i=1:700     input(i,:)=input(i,:)/max(input(i,:)); end[ iter,Obj_Fcn,CAT]=fuzzycm(input,14,2,1.0e-6)YLSF_ART_CAT=CAT;Sample1=1:100;YLSF_ART_CAT1=YLSF_ART_CAT(1:100);plot(Sample1,YLSF_ART_CAT1,'xy','markersize',10)hold onSample2=101:200;YLSF_ART_CAT2=YLSF_ART_CAT(101:200);plot(Sample2,YLSF_ART_CAT2,'pg','markersize',10)hold onSample3=201:300;YLSF_ART_CAT3=YLSF_ART_CAT(201:300);plot(Sample3,YLSF_ART_CAT3,'ob','markersize',14)Sample4=301:400;YLSF_ART_CAT4=YLSF_ART_CAT(301:400);plot(Sample4,YLSF_ART_CAT4,'vc','markersize',14)Sample5=401:500;YLSF_ART_CAT5=YLSF_ART_CAT(401:500);plot(Sample5,YLSF_ART_CAT5,'Dm','markersize',14)Sample6=501:600;YLSF_ART_CAT6=YLSF_ART_CAT(501:600);plot(Sample6,YLSF_ART_CAT6,'*r','markersize',14)Sample7=601:700;YLSF_ART_CAT7=YLSF_ART_CAT(601:700);plot(Sample7,YLSF_ART_CAT7,'hk','markersize',14)hold ond=15;k=d;for i=1:dplot([0,730],[i,i],':K')hold onendfor j=1:7    h=100*j;    plot([h,h],[0,k],':K')    hold onendaxis([0 700 0 k]);set(gca,'fontsize',20);set(gca,'xtick',0:100:700);set(gca,'ytick',0:1:k);title('FCM诊断结果','FontName','宋体','FontSize',18)xlabel('样本','FontName','宋体','FontSize',18)ylabel('种类','FontName','宋体','FontSize',18)% gtext('a','FontName','Times New Roman','FontSize',24)

⛄ 运行结果

⛄ 参考文献

[1] 张淑清,胡永涛,李盼,等.基于MEMD互近似熵及FCM聚类的轴承故障诊断方法[J].中国机械工程, 2015, 26(19):6.DOI:10.3969/j.issn.1004-132X.2015.19.010.

[2] 杨艺芳.SVM和FCM相结合的故障诊断方法的研究[D].西安科技大学,2008.DOI:10.7666/d.y1322455.

[3] 向玲,郭鹏飞,高楠,等.基于IITD和FCM聚类的滚动轴承故障诊断[J].航空动力学报, 2018, 33(10):8.DOI:10.13224/j.cnki.jasp.2018.10.029.

[4] 康乐.基于EEMD-SVD的FCM聚类的轴承故障诊断[D].燕山大学[2023-07-06].DOI:CNKI:CDMD:2.1016.764408.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1.卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3.旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划
4.无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
5.传感器部署优化、通信协议优化、路由优化、目标定位
6.信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号
7.生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化
8.微电网优化、无功优化、配电网重构、储能配置
9.元胞自动机交通流 人群疏散 病毒扩散 晶体生长

这篇关于【故障诊断】基于FCM模糊聚类算法实现轴承故障诊断附Matlab代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/201571

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time