Dijkstra算法——单源最短路径(指定一个节点(源点)到其余各个顶点的最短路径)

2023-10-13 01:20

本文主要是介绍Dijkstra算法——单源最短路径(指定一个节点(源点)到其余各个顶点的最短路径),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Dijkstra算法——单源最短路径

  • 1.预设场景
  • 2.数据结构描述
  • 3.算法基本思想
  • 具体过程详解
  • 4.代码实现
  • 5.总结
  • 6.END!

1.预设场景

国庆期间,小明打算从1号城市出发,在五天假期中分别去往不同的城市(2,3,4,5,6)旅游,为减轻负担,他想要知道1号城市到各个城市之间的最短距离。
在这里插入图片描述
现在需要设计一种算法求得源点到任意一个城市之间的最短路径。该问题的求解也被称为“单源最短路径”。

2.数据结构描述

在所有的数据结构中,0号下标(0行0列)均不存储元素
同样,这里使用二维数组e来存储顶点之间边的关系。初始值如下:
在这里插入图片描述
用一个一维数组dis存储源点(1号顶点)到其余各个顶点的初始距离。其初始值如下:
在这里插入图片描述

3.算法基本思想

算法的基本思想是:每次找到距离源点最近的一个节点,然后以该节点为中心进行扩展,最终得到源点到其余所有点的最短路径。具体步骤如下:

  1. 将所有的顶点分为两部分:已知最短路径的顶点集合P和未知最短路径的顶点集合Q。开始,已知最短路径的顶点集合P中只有源点一个节点,知最短路径的顶点集合Q中包含了除了源点之外的所有节点。为减少空间复杂度(P和Q不重新开辟空间),用一个数组book记录那个节点在P中,那个节点在Q中。例如对于节点i来说,book[i] = 1表示节点i在集合p中,book[i] = 0表示节点i在集合Q中。
  2. 设置源点i到自己的最短路径为0,即dis[i] = 0。若存在有源点能直接到达的顶点j,则把dis[j] = e[i][j],同时把其他源点不能直接到达顶点的最短路径设为∞。
  3. 在集合Q的所有顶点中选择一个离源点i最近的顶点u(dis[u]最小)加入到集合P。然后考察所有以u为起点的边,对每一条边进行松弛操作。(何为松弛操作:例如存在一条从u到j的边,那么就可以以u为中间节点到达j,这条路径的长度是e[u][j] + dis[u],如果这个值比目前的dis[j]小,可以就找到了一个i到j的最短路径,用新值代替当前dis[j]中的值。)
  4. 重复步骤3,直至集合Q为空。最终数组dis中的值就是源点到所有顶点的最短路径。

具体过程详解

还是以下面的图为例:
在这里插入图片描述
,其初始化二维数组e和数组dis皆如上所示,没有任何变化。
在这里插入图片描述
在这里插入图片描述

具体步骤如下:

  1. 初始化e[vertice + 1][vertice + 1],book[vertice + 1](集合P和集合Q),和dis[vertice + 1](如上所示)。

  2. 观察比较数组dis,可以得到dis[2]为数组dis中的最小值,而且book[2]==0。所以选择2号节点。对儿2号节点来说,有e[2][3] = 9和e[2][4] = 3。即从2号节点出发可以到达3,4号两个节点。
    ①dis[3]==12 >(dis[2] + e[2][3] == 10),所以可以判断1号顶点->3号顶点(dis[3])的距离 大于 1号顶点->2号顶点->3号顶点,于是更新dis[3]的值。
    ②dis[4]==∞ >(dis[2] + e[2][4] == 4),所以可以判断1号顶点->4号顶点(dis[3])的距离 大于 1号顶点->2号顶点->4号顶点,于是更新dis[3]的值。
    至此,以2号节点的边来“松弛”过程结束,数据结构变化如下:
    在这里插入图片描述

  3. 观察步骤2后的结果,可以发现dis[4]为数组dis中的最小值,而且book[4]==0。所以选择4号节点。对儿4号节点来说,有e[4][3] = 4、e[4][5] =13和e[4][6] = 15。即从4号节点出发可以到达3,5,6号三个节点。
    ①dis[3]==10 >(dis[4] + e[4][3] == 8),所以可以判断1号顶点->2号顶点->3号顶点(dis[3])的距离 大于 1号顶点->2号顶点->4号顶点->3号顶点,于是更新dis[3]的值。(2号顶点为上一次的更新过程)
    ②dis[5]==∞ >(dis[4] + e[4][5] == 17),所以可以判断1号顶点->5号顶点(dis[5])的距离 大于 1号顶点->4号顶点->5号顶点,于是更新dis[5]的值。
    ③dis[6]==∞ >(dis[4] + e[4][6] == 19),所以可以判断1号顶点->6号顶点(dis[6])的距离 大于 1号顶点->4号顶点->6号顶点,于是更新dis[6]的值。
    至此,以4号节点的边来“松弛”过程结束,数据结构变化如下:
    在这里插入图片描述
    4.观察步骤3后的结果,可以发现dis[3]为数组dis中的最小值,而且book[3]==0。所以选择3号节点。对儿3号节点来说,有e[3][5] = 5。即从3号节点出发可以到达5号节点。
    ①dis[5]==17 >(dis[3] + e[3][5] == 13),所以可以判断1号顶点->2号顶点->4号顶点->5号顶点(dis[5])的距离 大于 1号顶点->3号顶点->5号顶点,于是更新dis[3]的值。(2,4号顶点为上一次的更新过程)
    至此,以3号节点的边来“松弛”过程结束,数据结构变化如下:
    在这里插入图片描述
    5.观察步骤4后的结果,可以发现dis[5]为数组dis中的最小值,而且book[5]==0。所以选择5号节点为中间节点。对儿4号节点来说,有e[5][6] = 4。即从5号节点出发可以到达6号节点。
    ①dis[6]==19 >(dis[5] + e[5][6] == 17),所以可以判断1号顶点->2号顶点->4号顶点->6号顶点(dis[6])的距离 大于 1号顶点->2号顶点->4号顶点->3号顶点->5号顶点->6号顶点,于是更新dis[6]的值。(2,4号顶点为上一次的更新过程)
    至此,以5号节点的边来“松弛”过程结束,数据结构变化如下:
    在这里插入图片描述
    6.观察步骤5后的结果,可以发现dis[6]为数组dis中的最小值,而且book[6]==0。所以选择6号节点为中间节点。但是对于6号节点来说,没有可以扩展的节点。
    至此,以6号节点的边来“松弛”过程结束,数据结构变化如下:
    在这里插入图片描述
    最后,数组dis如下,这便是1号顶点到其余顶点之间的最短距离:在这里插入图片描述

4.代码实现

#include <vector>
#include <iostream>using namespace std;class Digkstra
{
private:int vertice = 0;//顶点数int edge = 0;//边数vector<vector<int>> e;vector<bool> book;//判断顶点j是否扩展过vector<int> dis;//源点到各个顶点之间的最短距离public:Digkstra(int x, int y) :vertice(x), edge(y){//图的初始化从下标1开始e.resize(vertice + 1);//初始化二维数组的行for (int i = 0; i <= vertice; i++){e[i].resize(vertice + 1);//初始化二维数组的列}dis.resize(vertice + 1);book.resize(vertice + 1);}//图的初始化void Init_Digkstra(){for (int i = 0;i <= vertice; i++){for (int j = 0; j <= vertice; j++){if (i == 0 || j == 0){e[i][j] = 0;}if (i == j){e[i][j] = 0;}else{e[i][j] = INT_MAX;}}}}//读入图的边,并且根据边的信息初始化数组dis,数组bookvoid GetEdgeInfo(){cout << "输入边的信息(节点1,节点2,权重):" << endl;int e1 = 0, e2 = 0, weigth = 0;for (int i = 1; i <= edge; i++){cin >> e1 >> e2 >> weigth;e[e1][e2] = weigth;}for (int i = 1; i <= vertice; i++){dis[i] = e[1][i];}book[1] = true;}//打印void Print(){for (int i = 1; i <= vertice; i++){cout << dis[i] << "    "; }         cout << endl;}//Digkstra核心思想void Digkstra_Alg(){int u = 0;//离1号顶点最近顶点的下标for (int k = 1; k <= vertice; k++){int min = INT_MAX;//找离1号节点最近的节点(找数组dis中的最小值)           for (int j = 1; j <= vertice; j++){if (book[j] == false && dis[j] < min){min = dis[j];u = j;}}book[u] = true;for (int i = 1; i <= vertice; i++){if (e[u][i] < INT_MAX){if (dis[i] > dis[u] + e[u][i]){dis[i] = dis[u] + e[u][i];}}}}}};int main()
{Digkstra Digkstra(6, 9);Digkstra.Init_Digkstra();Digkstra.GetEdgeInfo();cout << "初始信息:" << endl;Digkstra.Print();Digkstra.Digkstra_Alg();cout << "单源最短路径(顶点1到其余各顶点):" << endl;Digkstra.Print();return 0;
}

在这里插入图片描述

5.总结

通过代码,可以得到该算法的时间复杂度是O(N^2)。而且这是一种基于贪心策略的算法。每次扩展一个新的最短距离的节点,就要更新与其相邻的点的距离。当所有边权重为正时,由于不存在一个路程更短的没有被扩展的点,所以这个点的距离不会别再次改变,从而保证了算法的正确性。
根据这一特点,用此算法求最短路径的图是不能有负权重的,因为扩展到负权重边的时候会产生更短的距离,有可能破坏已经更新的点距离不会改变的性质。

6.END!

这篇关于Dijkstra算法——单源最短路径(指定一个节点(源点)到其余各个顶点的最短路径)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/199763

相关文章

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

python获取当前文件和目录路径的方法详解

《python获取当前文件和目录路径的方法详解》:本文主要介绍Python中获取当前文件路径和目录的方法,包括使用__file__关键字、os.path.abspath、os.path.realp... 目录1、获取当前文件路径2、获取当前文件所在目录3、os.path.abspath和os.path.re

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu2544(单源最短路径)

模板题: //题意:求1到n的最短路径,模板题#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#i

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO