Dijkstra算法——通过边实现松弛

2023-10-12 22:20
文章标签 算法 实现 dijkstra 松弛

本文主要是介绍Dijkstra算法——通过边实现松弛,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引入:

指定一个点(源点)到其余各个顶点的最短路径,也叫做“单源最短路径”。例如求下图中的1号顶点到2、3、4、5、6号顶点的最短路径。

一如既往,二维数组存图:

但是,我们还需要一个一维数组dis来存储1号顶点到其余各个顶点的初试路程。如下:

我们将此时dis数组中的值称为最短路程的“估计值”。

既然是求1号顶点到其余各个顶点的最短路程,那就先找一个离1号顶点最近的顶点。通过数组dis可知当前离1号顶点最近的是2号顶点。当选择了2号顶点后,dis[2]的值就已经从“估计值”变为了“确定值”,即1号顶点到2号顶点的最短路程就是当前dis[2]值;

松弛2号顶点:

既然选择了2号顶点,接下来再来看2号顶点有哪些出边呢。有2-->3和2-->4这两条边。先讨论通过2-->3这条边能否让1号顶点到3号顶点的路程变短,也就是说现在来比较dis[3]和dis[2]+e[2][3]的大小。其中dis[3]表示1号顶点到3号顶点的路程;我们发现dis[3] = 12,dis[2] + e[2][3] = 1 + 9 = 10,dis[2] + e[2][3] < dis[3],因此dis[3]要更新为10。这个过程有个专业术语叫做“松弛”,1号顶点到3号顶点的路程变为dis[3],通过2-->3这条边松弛成功。

这便是Dijkstra算法的主要思想:通过“边”来松弛1号顶点到其余各个顶点的路程

同理,通过2-->4(e[2][4]),可以将dis[4]的值从 oo 松弛为4(dis[4]初始为oo,dis[2] + e[2][4] = 1 + 3 = 4),dis[2] + e[2][4] < dis[4],因此dis[4]要更新为4)。

刚才我们对2号顶点所有的出边进行了松弛。松弛完毕之后dis数组为:

接下来,继续在剩下的3、4、5和6号顶点中,选出离1号顶点最近的顶点。通过上面更新过的dis数组,当前离1号顶点最近的是4号顶点。此时,dis[4]的值已经从“估计值”变为了“确定值”。

松弛4号顶点:

下面继续对4号顶点的所有出边(4-->3,4-->5和4-->6)用刚才的方法进行松弛。松弛完毕之后dis数组为:

 继续在剩下的3、5和6号顶点中,选出离1号顶点最近的顶点,那就是3号顶点;

松弛3号顶点:

对3号顶点的所有出边(3-->5)进行松弛。松弛完毕之后dis数组为:

继续在剩下的5和6号顶点中,选出离1号顶点最近的顶点,这次选择5号顶点。此时,dis[5]的值已经从“估计值”变为了“确定值”。

松弛5号顶点:

对5号顶点的所有出边(5-->4)进行松弛。松弛完毕之后dis数组为:

最后对6号顶点的所有出边进行松弛。因为这个例子中6号顶点没有出边,因此不用处理。到此,dis数组中所有的值都已经从“估计值”变为了“确定值”。

最终dis数组:

(这便是1号顶点到其余各个顶点的最短路径).

基本思想:

每次找到离源点(上面例子的源点就是1号顶点)最近的一个顶点,然后以该顶点为中心进行扩展,最终得到源点到其余所有点的最短路径。基本步骤如下:

(1)将所有的顶点分成两部分:已知最短路程的顶点集合P和未知最短路径的顶点集合Q。最开始,已知最短路径的顶点集合P中只有源点一个顶点。我们这里用一个book数组来记录哪些点在集合P中。例如对于某个顶点i,如果book[i]为1则表示这个顶点在集合P中,如果book[i]为0则表示这个顶点在集合Q中。

(2)设置源点s到自己的最短路径为0即dis[s] = 0。若存在有源点能直接到达的顶点i,则把dis[i]设为e[s][i]。同时把所有其他(源点不能直接到达的)顶点的最短路径设为oo 。

(3)在集合Q的所有顶点中选择一个离源点s最近的顶点u(即dis[u]最小)加入到集合P。并考察所有以点u为起点的边,对每一条边进行松弛操作。例如存在一条从u到v的边,那么可以通过将边u-->v添加到尾部来拓展一条s到v的路径,这条路径的长度是dis[u] + e[u][v]。如果这个值比目前已知的dis[v]的值要小,我们可以用新值来替代当前dis[v]中的值。

(4)重复第三步,如果集合Q为空,结束。最终dis数组中的值就是源点到所有顶点的最短路径。

算法核心代码:

//Dijkstra算法核心语句for(i = 1 ; i <= n ; i ++){//找到离1号顶点最近的顶点min = inf;for(j = 1 ; j <= n ; j ++){if(book[j] == 0 && dis[j] < min){min = dis[j];u = j;}} book[u] = 1;for(v = 1 ; v <= n ; v ++){if(e[u][v] < inf){if(dis[u] + e[u][v] < dis[v])  dis[v] = dis[u] + e[u][v];}}}

算法完整代码:

#include<bits/stdc++.h>using namespace std;int e[10][10],dis[10],book[10];int main()
{int i,j;int n,m;int t1,t2,t3;int u,v,min;int inf = 99999999; //无穷//读入n和m,n表示顶点个数,m表示边的条数cin >> n >> m;//初始化for(i = 1 ; i <= n ; i ++){for(j = 1 ; j <= m ; j ++){if(i == j)  e[i][j] = 0;else  e[i][j] = inf;}}//读入边for(i = 1 ; i <= m ; i ++){cin >> t1 >> t2 >> t3;e[t1][t2] = t3;} //初始化dis数组,这里是1号顶点到其余各个顶点的初始路程for(i = 1 ; i <= n ; i ++)  dis[i] = e[1][i];//book数组初始化for(i = 1 ; i <= n ; i ++)  book[i] = 0;book[1] = 1;//Dijkstra算法核心语句for(i = 1 ; i <= n ; i ++){//找到离1号顶点最近的顶点min = inf;for(j = 1 ; j <= n ; j ++){if(book[j] == 0 && dis[j] < min){min = dis[j];u = j;}} book[u] = 1;for(v = 1 ; v <= n ; v ++){if(e[u][v] < inf){if(dis[u] + e[u][v] < dis[v])  dis[v] = dis[u] + e[u][v];}}}//输出最终的结果for(i = 1 ; i <= n ; i ++)  cout << dis[i] << ' ';getchar();getchar();return 0; 
}

通过上面的代码我们可以看出,这个算法的时间复杂度是O(N^2)。其中每次找到离1号顶点最近的顶点的时间复杂度是O(N),这里我们可以用“堆”来优化,使得这一部分的时间复杂度降低到O(logN)。另外对于边数M少了N^2的稀疏图来说(我们把M远小于N^2的图称为稀疏图,而M相较大的图成为稠密图),我们可以用邻接表代替邻接矩阵,使得整个时间复杂度优化到O(M + N)logN。请注意!在最坏的情况下M就是N^2,这样的话(M + N)logN要比N^2还要大。

用邻接表来存储一个图:

先上数据:

这篇关于Dijkstra算法——通过边实现松弛的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/198825

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、