【Python】用Python绘制折线图(插值法平滑曲线)

2023-10-12 20:32

本文主要是介绍【Python】用Python绘制折线图(插值法平滑曲线),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

利用绘制图表:​​​​​​matplotlib官网

1. 小试牛刀——柱状图

1.1 matplotlib库默认英文字体

2. 折线图绘制

2.1 读取exal方法

2.1.1  数据处理常用库:pandas

2.1.2 找到pandas在pathon安装的位置Lib->site-package

2.2 提取列表数组

3. 论文图片的类型和格式

4. Python绘制折线图坐标无法显示负号

5. 绘制曲线

6. 绘制插值拟合曲线

6.1 interpld曲线方法

6.2 splprep曲线方法

7. 完整程序


利用绘制图表:​​​​​​matplotlib官网

1. 小试牛刀——柱状图

基本方法:matplotlib.pyplot.bar()

基本参数:bar(x,y)

其他参数:颜色color        宽度width        透明度alpha        

其他方法:图例legend()        横轴定义xlable()        纵轴定义ylable()        图标题title()        刻度方法xlim(), ylim()

import matplotlib.pyplot as plt #绘图
import pandas as pd #读取exal文件
plt.rcParams['font.sans-serif']=['SimHei'] #添加黑体作为绘图字体
name = ['tom', 'rose', 'lucy']#变量name装了一个列表
weight = [60, 70, 80]#具有位置属性和数值属性
plt.bar(name, weight, label='体重', color='green', alpha=0.5, width=0.5)   #从库里面调用方法+图例+颜色+透明度+宽度
plt.xlabel('姓名')
plt.ylabel('体重 单位kg')
plt.title('三个人的体重xx')
plt.legend()
plt.savefig('柱状图.png', dip=500)
plt.show()  #显示方法

1.1 matplotlib库默认英文字体

添加黑体(‘SimHei’)为绘图字体用以在图表中显示。

代码:

plt.rcParams['font.sans-serif']=['SimHei']

2. 折线图绘制

2.1 读取exal方法

2.1.1  数据处理常用库:pandas

用pandas读取excel文件的常用方法:read_excel()  参数是文件名 

2.1.2 找到pandas在pathon安装的位置Lib->site-package

import matplotlib.pyplot as plt #绘图
import pandas as pd #读取exal文件
Data = pd.read_excel('E:\PythonData/LandingData.xlsx')#exal文件路径,注意不要数字开头
print(Data)#打印数据

  注意文件路径开头不要是数字,不然报错 

E:\PythonData/LandingData.xlsx

2.2 提取列表数组

#获取各通道温度数据
飞行高度 = Data.飞行高度
温度1 = Data.温度1
温度2 = Data.温度2
温度3 = Data.温度3
温度4 = Data.温度4
温度5 = Data.温度5
温度6 = Data.温度6
温度7 = Data.温度7
温度8 = Data.温度8
温度9 = Data.温度9
温度10 = Data.温度10
温度11 = Data.温度11

3. 论文图片的类型和格式

plt.savefig('折线图.png', dip=500)

位图(放大后有马赛克):.jpg        .tif        .psd        .bmp        .png

矢量图(放大也很清晰):.wmf        .emf        .epd        .cdx

事物摄影使用位图,

.png格式是非可拓展文件类型;.pdf是可拓展文件格式,pdf是矢量图。

4. Python绘制折线图坐标无法显示负号

添加如下代码即可:

import matplotlib
matplotlib.rcParams['axes.unicode_minus']=False

本例程代码如下所示: 

plt.rcParams['axes.unicode_minus']=False

5. 绘制曲线

引入库

from scipy import interpolate

绘制一个图片,并确定图片位置:

fig = plt.figure(figsize=(10, 8))
ax1 = fig.add_subplot(1, 3, 1)

将曲线在图片中绘制,并加入图例:

plt.plot(Data.飞行高度, Data.温度1, label='温度1', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度2, label='温度2', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度3, label='温度3', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度4, label='温度4', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度5, label='温度5', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度6, label='温度6', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度7, label='温度7', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度8, label='温度8', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度9, label='温度9', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度10, label='温度10', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度11, label='温度11', linewidth=0.75)   #从库里面调用方法+图例plt.xlabel('飞行高度,单位m', fontsize=18)
plt.gca().invert_xaxis() #x轴反向
plt.ylabel('当前温度,单位℃', fontsize=18)
plt.title('原始数据点线绘图', fontsize=18)
plt.legend(loc='upper right')

6. 绘制插值拟合曲线

6.1 interpld曲线方法

# interpld
def spline1(x, y, point):f = interpolate.interp1d(x, y, kind="cubic")  #曲线绘制方法1X = np.linspace(飞行高度.min(), 飞行高度.max(), num=point, endpoint=True)Y = f(X)return X, Y

6.2 splprep曲线方法

def spline3(x, y, point, deg):tck, u = interpolate.splprep([x, y], k=deg, s=300) #曲线绘制方法2u = np.linspace(0, 1, num=point, endpoint=True) #显示范围比例spline = interpolate.splev(u, tck)return spline[0], spline[1]

这里注意deg参数:

Degree of the spline. Cubic splines are recommended. Even values of k should be avoided especially with a small s-value. 1 <= deg <= 5, default is 3.

scipy.interpolate.splprep — SciPy v1.7.1 Manual

7. 完整程序

看完上面的介绍,你还可以将下面的程序直接粘贴复制到你的电脑中运行一下,用实际操作来加深对绘图命令的学习:

# 导入相关库
import matplotlib.pyplot as plt #绘图
import pandas as pd #读取exal文件
import numpy as np
plt.rcParams['axes.unicode_minus']=False #轴坐标负数符号显示
plt.rcParams['font.sans-serif']=['SimHei'] #添加黑体作为绘图字体
Data = pd.read_excel('E:\PythonData/LandingData1.xlsx') #打开exal文件,注意文件路径,文件夹名称不要用数字开头
from scipy import interpolate
#获取各通道温度数据
飞行高度 = Data.飞行高度
温度1 = Data.温度1
温度2 = Data.温度2
温度3 = Data.温度3
温度4 = Data.温度4
温度5 = Data.温度5
温度6 = Data.温度6
温度7 = Data.温度7
温度8 = Data.温度8
温度9 = Data.温度9
温度10 = Data.温度10
温度11 = Data.温度11fig = plt.figure(figsize=(10, 8))
ax1 = fig.add_subplot(1, 3, 1)plt.plot(Data.飞行高度, Data.温度1, label='温度1', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度2, label='温度2', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度3, label='温度3', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度4, label='温度4', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度5, label='温度5', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度6, label='温度6', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度7, label='温度7', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度8, label='温度8', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度9, label='温度9', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度10, label='温度10', linewidth=0.75)   #从库里面调用方法+图例
plt.plot(Data.飞行高度, Data.温度11, label='温度11', linewidth=0.75)   #从库里面调用方法+图例plt.xlabel('飞行高度,单位m', fontsize=18)
plt.gca().invert_xaxis() #x轴反向
plt.ylabel('当前温度,单位℃', fontsize=18)
plt.title('原始数据点线绘图', fontsize=18)
plt.legend(loc='upper right')# interpld
def spline1(x, y, point):f = interpolate.interp1d(x, y, kind="cubic")  #曲线绘制方法1X = np.linspace(飞行高度.min(), 飞行高度.max(), num=point, endpoint=True)Y = f(X)return X, Y#splprep
def spline3(x, y, point, deg):tck, u = interpolate.splprep([x, y], k=deg, s=300) #曲线绘制方法2u = np.linspace(0, 1, num=point, endpoint=True) #显示范围比例spline = interpolate.splev(u, tck)return spline[0], spline[1]m1, n1 = spline1(飞行高度, 温度1, 50000)
m2, n2 = spline1(飞行高度, 温度2, 50000)
m3, n3 = spline1(飞行高度, 温度3, 50000)
m4, n4 = spline1(飞行高度, 温度4, 50000)
m5, n5 = spline1(飞行高度, 温度5, 50000)
m6, n6 = spline1(飞行高度, 温度6, 50000)
m7, n7 = spline1(飞行高度, 温度7, 50000)
m8, n8 = spline1(飞行高度, 温度8, 50000)
m9, n9 = spline1(飞行高度, 温度9, 50000)
m10, n10 = spline1(飞行高度, 温度10, 50000)
m11, n11 = spline1(飞行高度, 温度11, 50000)ax2 = fig.add_subplot(1, 3, 2)plt.plot(m1, n1, label="温度1")
plt.plot(m2, n2, label="温度2")
plt.plot(m3, n3, label="温度3")
plt.plot(m4, n4, label="温度4")
plt.plot(m5, n5, label="温度5")
plt.plot(m6, n6, label="温度6")
plt.plot(m7, n7, label="温度7")
plt.plot(m8, n8, label="温度8")
plt.plot(m9, n9, label="温度9")
plt.plot(m10, n10, label="温度10")
plt.plot(m11, n11, label="温度11")plt.xlabel('飞行高度,单位m', fontsize=18)
plt.gca().invert_xaxis() #x轴反向
plt.ylabel('当前温度,单位℃', fontsize=18)
plt.title('interpld插值绘图', fontsize=18)
plt.legend(loc='upper right')ax3 = fig.add_subplot(1, 3, 3)a1, b1 = spline3(飞行高度, 温度1, 50000, 3)
a2, b2 = spline3(飞行高度, 温度2, 50000, 3)
a3, b3 = spline3(飞行高度, 温度3, 50000, 3)
a4, b4 = spline3(飞行高度, 温度4, 50000, 3)
a5, b5 = spline3(飞行高度, 温度5, 50000, 3)
a6, b6 = spline3(飞行高度, 温度6, 50000, 3)
a7, b7 = spline3(飞行高度, 温度7, 50000, 3)
a8, b8 = spline3(飞行高度, 温度8, 50000, 3)
a9, b9 = spline3(飞行高度, 温度9, 50000, 3)
a10, b10 = spline3(飞行高度, 温度10, 50000, 3)
a11, b11 = spline3(飞行高度, 温度11, 50000, 3)plt.plot(a1, b1, label="温度1")
plt.plot(a2, b2, label="温度2")
plt.plot(a3, b3, label="温度3")
plt.plot(a4, b4, label="温度4")
plt.plot(a5, b5, label="温度5")
plt.plot(a6, b6, label="温度6")
plt.plot(a7, b7, label="温度7")
plt.plot(a8, b8, label="温度8")
plt.plot(a9, b9, label="温度9")
plt.plot(a10, b10, label="温度10")
plt.plot(a11, b11, label="温度11")plt.xlabel('飞行高度,单位m', fontsize=18)
plt.gca().invert_xaxis() #x轴反向
plt.ylabel('当前温度,单位℃', fontsize=18)
plt.title('splprep插值绘图', fontsize=18)
plt.legend(loc='upper right')plt.savefig('折线图.png', dip=500)
plt.show()  #显示方法

这篇关于【Python】用Python绘制折线图(插值法平滑曲线)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/198298

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

【WebGPU Unleashed】1.1 绘制三角形

一部2024新的WebGPU教程,作者Shi Yan。内容很好,翻译过来与大家共享,内容上会有改动,加上自己的理解。更多精彩内容尽在 dt.sim3d.cn ,关注公众号【sky的数孪技术】,技术交流、源码下载请添加微信号:digital_twin123 在 3D 渲染领域,三角形是最基本的绘制元素。在这里,我们将学习如何绘制单个三角形。接下来我们将制作一个简单的着色器来定义三角形内的像素

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

Flutter 进阶:绘制加载动画

绘制加载动画:由小圆组成的大圆 1. 定义 LoadingScreen 类2. 实现 _LoadingScreenState 类3. 定义 LoadingPainter 类4. 总结 实现加载动画 我们需要定义两个类:LoadingScreen 和 LoadingPainter。LoadingScreen 负责控制动画的状态,而 LoadingPainter 则负责绘制动画。

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

利用matlab bar函数绘制较为复杂的柱状图,并在图中进行适当标注

示例代码和结果如下:小疑问:如何自动选择合适的坐标位置对柱状图的数值大小进行标注?😂 clear; close all;x = 1:3;aa=[28.6321521955954 26.2453660695847 21.69102348512086.93747104431360 6.25442246899816 3.342835958564245.51365061796319 4.87