opencv--python(五)光流法/背景分割(MOG2)/腐蚀膨胀

2023-10-12 14:59

本文主要是介绍opencv--python(五)光流法/背景分割(MOG2)/腐蚀膨胀,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 光流法

光流:由于目标对象或者摄像机的移动造成的图像对象在连续两帧图像中的移动被称为光流。它是一个 2D 向量场,可以用来显示一个点从第一帧图像到第二 帧图像之间的移动。

光流是基于一下假设的:

  1. 在连续的两帧图像之间(目标对象的)像素的灰度值不改变。(/亮度不变)
  2. 相邻的像素具有相同的运动 。

结果:提取运动的物体

import cv2
import numpy as npcap = cv2.VideoCapture("vtest.avi")# 取出视频的第一帧
ret, frame1 = cap.read()
prvs = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY)
hsv = np.zeros_like(frame1)     # 为绘制创建掩码图片
hsv[...,1] = 255while(1):ret, frame2 = cap.read()next = cv2.cvtColor(frame2,cv2.COLOR_BGR2GRAY)     #转为灰度图flow = cv2.calcOpticalFlowFarneback(prvs, next, None, 0.5, 3, 15, 3, 5, 1.2, 0)  # 计算光流以获取点的新位置# 色调H:用角度度量,取值范围为0°~360°,从红色开始按逆时针方向计算,红色为0°,绿色为120°,蓝色为240°# 饱和度S:取值范围为0.0~1.0# 亮度V:取值范围为0.0(黑色)~1.0(白色)mag, ang = cv2.cartToPolar(flow[...,0], flow[...,1])hsv[...,0] = ang*180/np.pi/2   #色调范围:0°~360°hsv[...,2] = cv2.normalize(mag,None,0,255,cv2.NORM_MINMAX)rgb = cv2.cvtColor(hsv,cv2.COLOR_HSV2BGR)cv2.imshow('frame2',rgb)k = cv2.waitKey(30) & 0xffif k == 27:breakelif k == ord('s'):cv2.imwrite('opticalfb.png',frame2)cv2.imwrite('opticalhsv.png',rgb)prvs = nextcap.release()
cv2.destroyAllWindows()

在这里插入图片描述
2.背景分割

结果:移动的物体会被标记为白色,背景会被标记为黑色的

import numpy as np
import cv2cap = cv2.VideoCapture('vtest.avi')fgbg = cv2.createBackgroundSubtractorMOG2()    #背景分割while(1):ret, frame = cap.read()fgmask = fgbg.apply(frame)    #应用cv2.imshow('frame',fgmask)k = cv2.waitKey(30) & 0xffif k == 27:breakcap.release()
cv2.destroyAllWindows()

在这里插入图片描述
在这里插入图片描述

3.腐蚀和膨胀(开运算和闭运算)

1)腐蚀: cv2.erode()
作会把前景物体的边界腐蚀掉(但是前景仍然是白色)。这是怎么做到的呢?卷积核沿着图像滑动,如果与卷积核对应的原图像的所有像素值都是 1,那么中心元素就保持原来的像素值,否则就变为零。 ------去噪声
2)膨胀: cv2.dilate()
与卷积核对应的原图像的像素值中只要有一个是 1,中心元 素的像素值就是 1。所以这个操作会增加图像中的白色区域(前景)。--------连接两个分开的物体。
3)开运算: cv2.morphologyEx()
先进性腐蚀再进行膨胀就叫做开运算。因为腐蚀在去掉白噪声的同时,也会使前景对象变小。所以我们再对他进行膨胀。这时噪声已经被去除了,不会再回来了,但是前景还在并会增加。
4)闭运算
先膨胀再腐蚀。它经常被用来填充前景物体中的小洞,或者前景物体上的 小黑点。

代码:

import cv2
import numpy as npimg = cv2.imread('j.png',0)
kernel = np.ones((5,5),np.uint8)
erosion = cv2.erode(img,kernel,iterations = 1)   #腐蚀
dilation = cv2.dilate(img,kernel,iterations = 1)   #膨胀
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)  #开运算
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)   #闭运算

原图:
在这里插入图片描述
腐蚀:
在这里插入图片描述
膨胀:
在这里插入图片描述
开运算:
在这里插入图片描述
闭运算:
在这里插入图片描述

这篇关于opencv--python(五)光流法/背景分割(MOG2)/腐蚀膨胀的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/196601

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核