本文主要是介绍win8 64bit下srilm+cygwin实现ngram语言模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
ngram语言模型+win8 64bit下安装srilm+cygwin实现
最近导师给了个新项目关于信息抽取(给了三篇论文,实验室混一年,动手能力没怎么提高但是看论文倒是飞快),会用到语言模型,虽然自己本身NLP出身但是实现论文的方法会涉及很多工程性问题。
论文需要实现ngram中的Good Turing平滑和回退模型的Katz Backoff平滑(怪自己研一的主修课没认真实践,扫了一遍研一课件(常宝宝),看懂公式到看懂别人的代码花了大半天时间),这里先讲了下两种平滑,Turing平滑的思想是将高频n元组频率调整到低频n元组:
数据集中存在没有频度为(r+1)的n元组情况,需要改造公式(引入
这里变成了简单Good Turing平滑,函数S(r+1):
这里有lager和smaller表示第一个比r更大和更小的频率(同时N不为0)即临近频率,可以先只考虑对S(r)的平滑,这里提供了线性平滑:
那么可以直接对整个数据集进行平滑,求平均的a和b值(其实最后只用到b),那么最后:
一般来说,Turing平滑比Good Turing平滑可靠,当Turing估计值和Good Turing估计值绝对差小于1.65倍的Turing估计值的标准差,可以使用Good Turing平滑代替Turing平滑。
Turing方差近似计算如下:
相关公式推导可以参考论文: [1] Church, K. and W. Gale, (1991), A comparison of the enhanced Good-Turing and deleted estimation methods for estimating probabilities of English bigrams, Computer Speech and Language, v. 5, pp. 19-54.
其实最后计算概率时候可以将r=0的那部分拿出来,其他部分如某个出现频次为r的单词的概率为:
那么r=0的那部分需要先统计测试集在训练集上未出现词的词汇量,然后平分:
具体实现细节可以参考NLP开源代码,这里可以看看snowseg中good_turing.py,请自行网上搜索。
Good Turing平滑的缺陷在于高阶ngram无法融合可靠性更高的低阶ngram(即低阶频率高)。接下来Katz backoff便利用这个优势。回退模型中涉及到条件概率,对r进行分段分析(设阈值k=5,Katz):
(1)r>k:不平滑。
(2)r=0:即未出现,Turing估计中未出现词估计值为
(3)k=>r>0:先进行Good Turing平滑,r*/r实际是对r的折扣,另外
结合上面的式子,其实u为常量。
其他平滑请参考http://www.flickering.cn/nlp/2015/02/%E6%88%91%E4%BB%AC%E6%98%AF%E8%BF%99%E6%A0%B7%E7%90%86%E8%A7%A3%E8%AF%AD%E8%A8%80%E7%9A%84-2%E7%BB%9F%E8%AE%A1%E8%AF%AD%E8%A8%80%E6%A8%A1%E5%9E%8B/。
接下来就是srilm安装,srilm安装环境为linux,由于win8电脑不能关机(跑了快一周的数据),那么需要安装cygwin,这里安装需要注意srilm/doc/README.windows-cygwin提到的cygwin依赖库(make, gcc, binutils, libiconv, gzip, tcltk, and gawk以及tcl,实际运行时候报错缺什么安装什么,安装时候需要勾选),这里选择的是163镜像网址比较快,接下来便是将srilm解压缩到cygwin目录下,并将home/[username]/.bashrc文件添加环境变量如下行:
export SRILM=/srilm
export MACHINE_TYPE=cygwin
export PATH=$PATH:$pwd:$SRILM/bin/cygwin64
export MANPATH=$MANPATH:$SRILM/man
在srilm/Makefile 增加一行SRILM=/srilm
,每一行请检查,这里需要保证和实际路径一致,uname -m测试保证机器变量和实际一致。
接下来便是运行cygwin,在命令行模式下进入cd /srilm
依次执行make World
、make all
、make cleanest
编译srilm,如遇到任何问题反复安装cygwin并勾选没有安装好的依赖库,整个过程差不多半个小时。运行如下:
srilm是一个强大的nlp库,具体见
http://www.speech.sri.com/projects/srilm/download.html,http://blog.csdn.net/zhoubl668/article/details/7759042。
cygwin和srilm安装参考http://m.blog.csdn.net/blog/lv_xinmy/8572496。
ubuntu上安装srilm参考http://www.leexiang.com/how-to-configure-srilm-on-ubuntu。
下节讨论基于上面基础之上的HMM模型。
这篇关于win8 64bit下srilm+cygwin实现ngram语言模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!