计算损失函数C语言,EAST 算法超详细源码解析(四)、损失函数

2023-10-11 11:20

本文主要是介绍计算损失函数C语言,EAST 算法超详细源码解析(四)、损失函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Date: 2020/05/19

Author: CW

前言:

EAST 的损失函数由三部分构成,对应预测输出的三个map——score map、loc map 以及 angle map,即分类损失,位置(点到文本框边界上下左右的距离)损失以及角度损失。

分类损失

对于分类损失,最自然想到的就是交叉熵。在这里,由于在文本框外的点会占多数,即负样本比例较大,因此,可采用类别平衡的交叉熵损失。

0efd281b1481

类别平衡的交叉熵损失

在代码实现中,以上有个特别需要注意的地方,就是模型输出的预测结果 pred_score 是从sigmoid 出来的,那么其取值范围为[0, 1],所以用在交叉熵时有可能使得 log 函数输出正/负无穷,因此需要加上一个极小值,这里使用的是 np.finfo(np.float32).eps。

另外,由于这里的分类是对一个个像素点进行区分(是否在文本框内),那么就可看作是语义分割问题,因此,使用 Dice Loss 作为分类损失也是一种可行的方案。

0efd281b1481

Dice Loss

对于以上两种 loss 的选择,根据我的训练结果来看,使用类别平衡交叉熵计算得到的loss值相对较小,可能需要调整合适的loss权重才能更好地让模型学会分类,否则这种方案下训练出的模型容易出现大量误检(召回率还不错但准确率低);而使用 dice loss 的话,loss 值通常在零点几的数量级,不需要加大权重,模型也能比较容易学好分类,训练出来的模型误检率较低。也可以将两种 loss 结合在一起,其中类别平衡的交叉熵损失权重要相对大一些。

几何损失

顾名思义,这部分损失指的是预测框与真实文本框之间在几何层面上计算的损失,通过 d1~d4以及 angle 来计算。

这里比较有意思的是,对于

math?formula=d_%7Bi%7D%20(i=1,2,3,4) ,并不是分别计算预测的

math?formula=d_%7Bi%7D%20与 对应标签的

math?formula=d_%7Bi%7D%20的差来作为损失,而是根据

math?formula=d_%7Bi%7D%20计算出框的面积,然后将预测框与 gt 框之间的 IoU 用于损失计算,IoU 越大说明和 gt 越接近,因此 loss 应该越小,同时由于 IoU 取值范围在 [0, 1],因此可将其输入 log 函数并乘以-1作为 loss。

而对于 angle,使用余弦函数,余弦函数的输入为预测 angle 与 对应标签的 angle 之差。使用余弦函数的好处是,它是偶函数,无需对角度差值取绝对值。这样的话,两个角度相差越小,余弦函数的输出则越大,因此用1减去余弦函数的输出便可作为这部分的loss。

0efd281b1481

几何损失 (i)

这里需要注意的是交集的计算,与通常计算两个 bbox 的交集稍有不同,这里是根据d来计算的,要取预测与 gt 对应 d 的最小值才是交集,而不像通常的两个 bbox 在计算交集的 x_min 与y_min 时是分别取两者的最大值。

0efd281b1481

几何损失 (ii)

0efd281b1481

几何损失 (iii)

综合损失

最终模型的损失综合了分类与几何损失,可以根据实际情况分别对分类 loss、IoU loss、angle loss 设置不同的权重,最后加起来作为总的损失。

通常在代码中实现模型的损失计算时,都会将其实现为一个 torch.nn.Module 的子类,损失计算则通过重载 forward 方法也即前向反馈过程来实现。

0efd281b1481

损失计算

在这里我们需要考虑一种情况,就是一个 batch 中可能并没有 gt,那么此时就不计算损失,直接返回损失为0。

另外注意上图红框部分,这里将几何 loss 与 gt_score 相乘,由于gt_score 中非0即1,因此说明这里仅对正样本计算几何损失。

最后:

越发地觉得,gt 的生成与 loss 的设计往往是很有技巧性的,它们直接影响到模型会学习成什么样子,gt 生成让模型了解到学习的目标,而 loss 设计则是将模型学习的目标转化为在数学上的表达形式,使得模型有途径通过迭代学习不断逼近目标。

在阅读与手写了众多算法模型代码后,吾以为,细心观察生活很重要,只有你足够了解生活,才能从其中的需求中出发,然后基于生活中某些事物的工作方式,抽象出一套方法论,接着用代码去实践,最终通过实验验证,这样之后才有可能创造出一个好的模型算法。

这篇关于计算损失函数C语言,EAST 算法超详细源码解析(四)、损失函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/187680

相关文章

Linux中shell解析脚本的通配符、元字符、转义符说明

《Linux中shell解析脚本的通配符、元字符、转义符说明》:本文主要介绍shell通配符、元字符、转义符以及shell解析脚本的过程,通配符用于路径扩展,元字符用于多命令分割,转义符用于将特殊... 目录一、linux shell通配符(wildcard)二、shell元字符(特殊字符 Meta)三、s

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

Java操作PDF文件实现签订电子合同详细教程

《Java操作PDF文件实现签订电子合同详细教程》:本文主要介绍如何在PDF中加入电子签章与电子签名的过程,包括编写Word文件、生成PDF、为PDF格式做表单、为表单赋值、生成文档以及上传到OB... 目录前言:先看效果:1.编写word文件1.2然后生成PDF格式进行保存1.3我这里是将文件保存到本地后

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

使用Python实现批量访问URL并解析XML响应功能

《使用Python实现批量访问URL并解析XML响应功能》在现代Web开发和数据抓取中,批量访问URL并解析响应内容是一个常见的需求,本文将详细介绍如何使用Python实现批量访问URL并解析XML响... 目录引言1. 背景与需求2. 工具方法实现2.1 单URL访问与解析代码实现代码说明2.2 示例调用