计算机视觉--通过HSV和YIQ颜色空间处理图像噪声

2023-10-11 10:01

本文主要是介绍计算机视觉--通过HSV和YIQ颜色空间处理图像噪声,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

计算机视觉


文章目录

  • 计算机视觉
  • 前言
  • 一、实现步骤
  • 二、实现
  • 总结


前言

利用HSV和YIQ颜色空间处理图像噪声。在本次实验中,我们使用任意一张图片,通过RGB转HSV和YIQ的操作,加入了椒盐噪声并将其转换回RGB格式,最终实现对图像的噪声处理。

一、实现步骤

1、将RGB图像转换为HSV和YIQ格式
我们使用cv2中的cvtColor函数将RGB图像转换为HSV和YIQ格式。COLOR_RGB2HSV和COLOR_RGB2YCrCb表示转换为对应格式。
2、在HSV的H通道加入椒盐噪声
在HSV格式的图像中,我们选择了H通道。通过随机选择像素点的方式,在该像素点的H通道上加入椒盐噪声。具体操作是将该像素点的H值设置为255。
3、在YIQ的Y通道加入椒盐噪声
在YIQ格式的图像中,我们选择了Y通道。同样的方式,通过随机选择像素点的方式,在该像素点的Y通道上加入椒盐噪声。
4、将加入椒盐噪声的H通道、Y通道分别显示
接下来,我们分别显示加入了椒盐噪声的HSV和YIQ格式图像的H通道。使用matplotlib的imshow函数,并将显示效果设置为灰度图。
5、合成加入椒盐噪声的HSV、YIQ格式图像
我们将加入了椒盐噪声的HSV、YIQ格式的图像分别转换回RGB格式,方便后续显示。
6、分别将R、G、B通道显示
接下来,我们分别显示原始RGB图像的R、G、B通道。使用matplotlib的imshow函数,并将显示效果设置为灰度图。
7、分别将H、S、V通道显示
接下来,我们分别显示加入椒盐噪声的HSV图像的H、S、V通道。其中,H通道使用hsv色彩空间来显示,而S和V通道使用灰度图来显示。
8、显示加入椒盐噪声的HSV、YIQ格式图像
接下来,我们使用matplotlib显示加入椒盐噪声的HSV和YIQ格式的图像。
9、将合成的加入椒盐噪声的HSV、YIQ格式图像分别转换为RGB格式并显示

最后,我们将加入了椒盐噪声的HSV和YIQ格式的图像转换回RGB格式,并使用matplotlib进行显示。

二、实现

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('test.png')
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)# 显示原图
plt.imshow(img)
plt.title('Original RGB image')
plt.show()# 将RGB图像转换为HSV和YIQ格式
img_hsv = cv2.cvtColor(img,cv2.COLOR_RGB2HSV)
img_yiq = cv2.cvtColor(img,cv2.COLOR_RGB2YCrCb)# 在HSV的H通道加入椒盐噪声
img_hsv_salt = img_hsv.copy()
# 获取图像行数、列数和通道数信息
rows, cols, _ = img_hsv_salt.shape
# 在图像上随机选择100个像素点,并将其H通道值设置为255,模拟椒盐噪声
for i in range(100):x = np.random.randint(0, rows)y = np.random.randint(0, cols)    # 将选定像素点的H通道值设为255img_hsv_salt[x, y][0] = 255
img_hsv_salt = img_hsv.copy()
# 获取图像行数、列数和通道数信息
rows, cols, _ = img_hsv_salt.shape
# 在图像上随机选择100个像素点,并将其H通道值设置为255,模拟椒盐噪声
for i in range(100):x = np.random.randint(0, rows)y = np.random.randint(0, cols)    img_hsv_salt[x, y][0] = 255# 在YIQ的Y通道加入椒盐噪声
img_yiq_salt = img_yiq.copy()
for i in range(100):x = np.random.randint(0,rows)y = np.random.randint(0,cols)img_yiq_salt[x,y][0] = 255# 将加入椒盐噪声的H通道、Y通道分别显示
plt.imshow(img_hsv_salt[:,:,0], cmap='gray')
plt.title('Salt & Pepper noise on H channel of HSV')
plt.show()
plt.imshow(img_yiq_salt[:,:,0], cmap='gray')
plt.title('Salt & Pepper noise on Y channel of YIQ')
plt.show()# 合成加入椒盐噪声的HSV、YIQ格式图像
img_hsv_salt = cv2.cvtColor(img_hsv_salt,cv2.COLOR_HSV2RGB)
img_yiq_salt = cv2.cvtColor(img_yiq_salt,cv2.COLOR_YCrCb2RGB)# 分别将R、G、B通道显示
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(12, 4))
axs[0].imshow(img[:,:,0], cmap='gray')
axs[0].set_title('R')
axs[1].imshow(img[:,:,1], cmap='gray')
axs[1].set_title('G')
axs[2].imshow(img[:,:,2], cmap='gray')
axs[2].set_title('B')
plt.show()# 分别将H、S、V通道显示
fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(12, 4))
axs[0].imshow(img_hsv[:,:,0], cmap='hsv')
axs[0].set_title('H')
axs[1].imshow(img_hsv[:,:,1], cmap='gray')
axs[1].set_title('S')
axs[2].imshow(img_hsv[:,:,2], cmap='gray')
axs[2].set_title('V')
plt.show()# 显示加入椒盐噪声的HSV、YIQ格式图像
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(12, 6))
axs[0].imshow(img_hsv_salt)
axs[0].set_title('Salt & Pepper noise on H channel of HSV')
axs[1].imshow(img_yiq_salt)
axs[1].set_title('Salt & Pepper noise on Y channel of YIQ')
plt.show()# 将合成的加入椒盐噪声的HSV、YIQ格式图像分别转换为RGB格式并显示
img_hsv_salt_rgb = cv2.cvtColor(img_hsv_salt,cv2.COLOR_RGB2BGR)
img_yiq_salt_rgb = cv2.cvtColor(img_yiq_salt,cv2.COLOR_RGB2BGR)
plt.imshow(img_hsv_salt_rgb)
plt.title('Salt & Pepper noise on H channel of HSV RGB')
plt.show()
plt.imshow(img_yiq_salt_rgb)
plt.title('Salt & Pepper noise on Y channel of YIQ RGB')
plt.show()

总结

在本文中,我们使用RGB转HSV和YIQ的操作,通过加入椒盐噪声并将其转换回RGB格式,对图像进行了噪声处理。我们展示了原始RGB图像以及其R、G、B通道的显示,接着将图像转换为HSV和YIQ格式,并在H通道和Y通道中分别加入了椒盐噪声。然后,我们将加入了噪声的H、S、V通道以及Y通道进行了显示。最后,我们展示了加入椒盐噪声的HSV和YIQ格式图像,并将它们转换回RGB格式进行显示。

通过这样的操作,我们可以进一步了解颜色空间转换在图像处理中的应用,以及如何通过加入噪声来模拟图像中的实际场景。此外,我们还探索了如何通过转换回RGB格式来展示噪声处理后的图像。这些技术在图像去噪、图像增强和其他相关领域中具有重要的应用价值。这些方法对于从图像中去除噪声以及提高图像视觉效果具有重要意义,并且可以在许多实际应用中发挥作用。

这篇关于计算机视觉--通过HSV和YIQ颜色空间处理图像噪声的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/187267

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp

jenkins 插件执行shell命令时,提示“Command not found”处理方法

首先提示找不到“Command not found,可能我们第一反应是查看目标机器是否已支持该命令,不过如果相信能找到这里来的朋友估计遇到的跟我一样,其实目标机器是没有问题的通过一些远程工具执行shell命令是可以执行。奇怪的就是通过jenkinsSSH插件无法执行,经一番折腾各种搜索发现是jenkins没有加载/etc/profile导致。 【解决办法】: 需要在jenkins调用shell脚

计算机视觉工程师所需的基本技能

一、编程技能 熟练掌握编程语言 Python:在计算机视觉领域广泛应用,有丰富的库如 OpenCV、TensorFlow、PyTorch 等,方便进行算法实现和模型开发。 C++:运行效率高,适用于对性能要求严格的计算机视觉应用。 数据结构与算法 掌握常见的数据结构(如数组、链表、栈、队列、树、图等)和算法(如排序、搜索、动态规划等),能够优化代码性能,提高算法效率。 二、数学基础

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

明明的随机数处理问题分析与解决方案

明明的随机数处理问题分析与解决方案 引言问题描述解决方案数据结构设计具体步骤伪代码C语言实现详细解释读取输入去重操作排序操作输出结果复杂度分析 引言 明明生成了N个1到500之间的随机整数,我们需要对这些整数进行处理,删去重复的数字,然后进行排序并输出结果。本文将详细讲解如何通过算法、数据结构以及C语言来解决这个问题。我们将会使用数组和哈希表来实现去重操作,再利用排序算法对结果

8. 自然语言处理中的深度学习:从词向量到BERT

引言 深度学习在自然语言处理(NLP)领域的应用极大地推动了语言理解和生成技术的发展。通过从词向量到预训练模型(如BERT)的演进,NLP技术在机器翻译、情感分析、问答系统等任务中取得了显著成果。本篇博文将探讨深度学习在NLP中的核心技术,包括词向量、序列模型(如RNN、LSTM),以及BERT等预训练模型的崛起及其实际应用。 1. 词向量的生成与应用 词向量(Word Embedding)