本文主要是介绍第4讲 李群与李代数-部分习题解答,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
5.证明:
R p ∧ R T = ( R p ) ∧ . Rp^{\wedge }R^{T} = (Rp)^{\wedge}. Rp∧RT=(Rp)∧.
证明:
⇒ ( R p ) ∧ n = ( R p ) × ( R R − 1 n ) = R [ p × ( R − 1 n ) ] = R p ∧ R ⊤ n \Rightarrow (Rp)^{\wedge}n = (Rp) \times (RR^{-1}n) = R [ p \times (R ^{-1} n) ] = Rp ^ {\wedge}R^{\top}n ⇒(Rp)∧n=(Rp)×(RR−1n)=R[p×(R−1n)]=Rp∧R⊤n
⇒ R p ∧ R ⊤ = ( R p ) ∧ \Rightarrow Rp^{\wedge}R^{\top} = (Rp)^{\wedge} ⇒Rp∧R⊤=(Rp)∧
证明过程如下,纯属个人理解,仅供参考交流。
.
6.1 证明
R e x p ( p ∧ ) R T = e x p ( ( R p ) ∧ ) Rexp(p^{\wedge})R^{T}=exp((Rp)^{\wedge}) Rexp(p∧)RT=exp((Rp)∧)
该式称为SO(3) 上的伴随性质。
证明:
R e x p ( p ∧ ) R T = R ∑ n = 0 ∞ p ∧ n n ! R T = ∑ n = 0 ∞ ( R p ∧ R T ) n n ! = e x p ( R p ∧ R T ) = e x p ( ( R p ) ∧ ) Rexp(p^{\wedge})R^{T}=R\sum_{n=0}^{\infty }\frac{{p}^{\wedge n}}{n!}R^{T}=\sum _{n=0}^{\infty }\frac{(R {p}^{\wedge} R^{T}) ^{n}}{n!}=exp(R{p}^{\wedge}R^{T})=exp({(Rp)^{\wedge}}) Rexp(p∧)RT=Rn=0∑∞n!p∧nRT=n=0∑∞n!(Rp∧RT)n=exp(Rp∧RT)=exp((Rp)∧)
6.2 证明
T exp ( ξ ∧ ) T − 1 = exp ( ( A d ( T ) ξ ) ∧ ) \mathbf{T}\exp(\bm{\xi}^\land)\mathbf{T}^{-1} = \exp((Ad(\mathbf{T})\bm{\xi})^\land) Texp(ξ∧)T−1=exp((Ad(T)ξ)∧)
其中:
A d ( T ) = [ R t ∧ R 0 R ] Ad(\textbf{T}) = \begin{bmatrix} \textbf{R} & \bm{t}^\land \textbf{R} \\ 0 & \textbf{R} \end{bmatrix} Ad(T)=[R0t∧RR]
证明:
设 ξ = [ ρ ϕ ] \bm{\xi}=\begin{bmatrix}\bm{\rho} \\ \bm{\phi} \end{bmatrix} ξ=[ρϕ], T = [ R t 0 ⊤ 1 ] \textbf{T}=\begin{bmatrix}\textbf{R} & \bm{t} \\ \textbf{0}^\top &1 \end{bmatrix} T=[R0⊤t1], 则:
T exp ( ξ ∧ ) T − 1 = T ∑ n = 0 ∞ 1 n ! ( ξ ∧ ) n T − 1 = ∑ n = 0 ∞ 1 n ! ( T ξ ∧ T − 1 ) n = exp ( T ξ ∧ T − 1 ) = exp ( [ R ϕ ∧ R ⊤ − R ϕ ∧ R ⊤ t + R ρ 0 ⊤ 0 ] ) = exp ( [ ( R ϕ ) ∧ − ( R ϕ ) ∧ t + R ρ 0 ⊤ 0 ] ) = exp ( [ − ( R ϕ ) ∧ t + R ρ R ϕ ] ∧ ) = exp ( ( [ R t ∧ R 0 R ] [ ρ ϕ ] ) ∧ ) = exp ( ( A d ( T ) ξ ) ∧ ) \begin{aligned} \textbf{T}\exp(\bm{\xi}^\land)\textbf{T}^{-1} &= \textbf{T} \sum_{n=0}^\infty \frac{1}{n!}(\bm{\xi}^\land)^n\textbf{T}^{-1} \\ &= \sum_{n=0}^{\infty}{\frac{1}{n!}(\textbf{T}\bm{\xi}^\land\textbf{T}^{-1})^n} \\ &= \exp{(\textbf{T}\bm{\xi}^\land\textbf{T}^{-1})}\\ &=\exp({\begin{bmatrix} \textbf{R}\bm{\phi}^\land\textbf{R}^\top & -\textbf{R}\bm{\phi}^\land\textbf{R}^\top\bm{t} + \textbf{R}\bm{\rho} \\ \textbf{0}^\top &0 \end{bmatrix}} )\\ &= \exp(\begin{bmatrix} (\textbf{R}\bm{\phi})^\land & -(\textbf{R}\bm{\phi})^\land\bm{t} + \textbf{R}\bm{\rho} \\ \textbf{0}^\top &0 \end{bmatrix}) \\ &= \exp(\begin{bmatrix} -(\textbf{R}\bm{\phi})^\land\bm{t} + \textbf{R} \bm{\rho} \\ \textbf{R}\bm{\phi} \end{bmatrix} ^\land) \\ &=\exp((\begin{bmatrix} \textbf{R} & \bm{t}^\land \textbf{R} \\ 0 & \textbf{R} \end{bmatrix} \begin{bmatrix} \bm{\rho} \\ \bm{\phi} \end{bmatrix})^\land) \\ &= \exp((Ad(\textbf{T})\bm{\xi})^\land) \end{aligned} Texp(ξ∧)T−1=Tn=0∑∞n!1(ξ∧)nT−1=n=0∑∞n!1(Tξ∧T−1)n=exp(Tξ∧T−1)=exp([Rϕ∧R⊤0⊤−Rϕ∧R⊤t+Rρ0])=exp([(Rϕ)∧0⊤−(Rϕ)∧t+Rρ0])=exp([−(Rϕ)∧t+RρRϕ]∧)=exp(([R0t∧RR][ρϕ])∧)=exp((Ad(T)ξ)∧)
参考:
- https://blog.csdn.net/qq_17032807/article/details/84942548
这篇关于第4讲 李群与李代数-部分习题解答的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!