EM@函数奇偶性性质@函数四则运算和复合运算后的奇偶性判断

2023-10-11 06:44

本文主要是介绍EM@函数奇偶性性质@函数四则运算和复合运算后的奇偶性判断,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • abstract
      • 奇函数和偶函数
    • 函数奇偶性性质
      • 函数记号声明
    • 四则运算性质
      • 和差
      • 乘积
    • 复合性质
      • 奇函数复合偶函数
      • 偶函数复合奇函数
      • 奇函数复合奇函数
      • 偶函数复合偶函数
    • 奇偶性小结🎈
      • 倍乘非零常数不改变奇偶性
    • 奇函数和偶函数表示定义域对称函数

abstract

  • 函数奇偶性性质:函数四则运算和复合运算后的奇偶性判断

奇函数和偶函数

  • f ( x ) f(x) f(x)的定义域关于原点对称,则当
    • f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x),称 f ( x ) f(x) f(x)为偶函数
    • f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x),称 f ( x ) f(x) f(x)为奇函数

函数奇偶性性质

函数记号声明

  • o ( x ) , o i ( x ) o(x),o_{i}(x) o(x),oi(x)均表示奇函数
  • e ( x ) , e i ( x ) e(x),e_i(x) e(x),ei(x)均表示偶函数

四则运算性质

和差

  • 偶(奇)函数相加得到的新函数仍为偶(奇)函数

  • 奇函数相加减,得到的新函数还是奇函数

    • h 1 ( x ) = o 1 ( x ) + o 2 ( x ) h_1(x)=o_1(x)+o_2(x) h1(x)=o1(x)+o2(x)
      • h 1 ( − x ) = o 1 ( − x ) + o 2 ( − x ) = − o 1 ( x ) − o 2 ( x ) = − ( o 1 ( x ) + o 2 ( x ) ) = − h 1 ( x ) h_1(-x)=o_1(-x)+o_2(-x)=-o_1(x)-o_2(x)=-(o_1(x)+o_2(x))=-h_1(x) h1(x)=o1(x)+o2(x)=o1(x)o2(x)=(o1(x)+o2(x))=h1(x)
    • h 1 ( x ) = o 1 ( x ) − o 2 ( x ) h_1(x)=o_1(x)-o_2(x) h1(x)=o1(x)o2(x)
      • h 1 ( − x ) = o 1 ( − x ) − o 2 ( − x ) = − o 1 ( x ) + o 2 ( x ) = − h 1 ( x ) h_1(-x)=o_1(-x)-o_2(-x)=-o_1(x)+o_2(x)=-h_1(x) h1(x)=o1(x)o2(x)=o1(x)+o2(x)=h1(x)
    • 合起来写: h 2 ( x ) = o 1 ( x ) ± o 2 ( x ) h_2(x)=o_1(x)\pm o_2(x) h2(x)=o1(x)±o2(x)
      • h 1 ( − x ) = o 1 ( − x ) ± o 2 ( − x ) h_1(-x)=o_1(-x)\pm o_2(-x) h1(x)=o1(x)±o2(x)= − o 1 ( x ) ± ( − o 2 ( x ) ) = − h 1 ( x ) -o_1(x)\pm(-o_2(x))=-h_1(x) o1(x)±(o2(x))=h1(x)
  • 偶函数相加减得到的新函数仍为偶函数

    • h 2 ( x ) = e 1 ( x ) ± e 2 ( x ) h_2(x)=e_1(x)\pm e_2(x) h2(x)=e1(x)±e2(x)
      • h 2 ( − x ) = e 1 ( − x ) ± e 2 ( − x ) = ( e 1 ( x ) ± ( e 2 ( x ) ) = h 2 ( x ) h_2(-x)=e_1(-x)\pm e_2(-x)=(e_1(x)\pm (e_2(x))=h_2(x) h2(x)=e1(x)±e2(x)=(e1(x)±(e2(x))=h2(x)
  • 奇函数 ± \pm ±偶函数的结果没有一般性的定论

乘积

  1. h 1 ( x ) = o ( x ) e ( x ) h_1(x)=o(x)e(x) h1(x)=o(x)e(x)
    • h 1 ( − x ) = o ( − x ) e ( − x ) = − o ( x ) e ( x ) = − h 1 ( x ) h_1(-x)=o(-x)e(-x)=-o(x)e(x)=-h_1(x) h1(x)=o(x)e(x)=o(x)e(x)=h1(x)
  2. h 2 ( x ) = o 1 ( x ) o 2 ( x ) h_2(x)=o_1(x)o_2(x) h2(x)=o1(x)o2(x)
    • h 2 ( − x ) = o 1 ( − x ) o 2 ( − x ) = ( − o 1 ( x ) ) ( − o 2 ( x ) ) = o 1 ( x ) o 2 ( x ) = h 2 ( x ) h_2(-x)=o_1(-x)o_2(-x)=(-o_1(x))(-o_2(x))=o_1(x)o_2(x)=h_2(x) h2(x)=o1(x)o2(x)=(o1(x))(o2(x))=o1(x)o2(x)=h2(x)
  3. h 3 ( x ) = e 1 ( x ) e 2 ( x ) h_3(x)=e_1(x)e_2(x) h3(x)=e1(x)e2(x)
    • h 3 ( − x ) = e 1 ( − x ) e 2 ( − x ) = e 1 ( x ) e 2 ( x ) = h 3 ( x ) h_3(-x)=e_1(-x)e_2(-x)=e_1(x)e_2(x)=h_3(x) h3(x)=e1(x)e2(x)=e1(x)e2(x)=h3(x)

上述三条分别表明:

  • 奇函数乘偶函数结果为奇函数
  • 偶函数乘偶函数结果为偶函数
  • 奇函数乘奇函数结果为偶函数

  • 令: y ( x ) = f ( x ) g ( x ) y(x)=\frac{f(x)}{g(x)} y(x)=g(x)f(x), y ( − x ) = f ( − x ) g ( − x ) y(-x)=\frac{f(-x)}{g(-x)} y(x)=g(x)f(x)
    1. y ( x ) = o 1 ( x ) o 2 ( x ) y(x)=\frac{o_1(x)}{o_2(x)} y(x)=o2(x)o1(x), y ( − x ) = y ( x ) y(-x)=y(x) y(x)=y(x)
    2. y ( x ) = o ( x ) e ( x ) y(x)=\frac{o(x)}{e(x)} y(x)=e(x)o(x),或 y ( x ) = e ( x ) o ( x ) y(x)=\frac{e(x)}{o(x)} y(x)=o(x)e(x),都有 y ( − x ) = − y ( x ) y(-x)=-y(x) y(x)=y(x)
    3. y ( x ) = e 1 ( x ) e 2 ( x ) y(x)=\frac{e_1(x)}{e_2(x)} y(x)=e2(x)e1(x),则 y ( − x ) = y ( x ) y(-x)=y(x) y(x)=y(x)
    • 分子分母奇偶性相同时,结果为偶函数
    • 分子分母奇偶性不同时,结果为奇函数
  • 例如:
    • sin ⁡ x x \frac{\sin{x}}{x} xsinx为偶函数,而 sin ⁡ x x 2 \frac{\sin{x}}{x^2} x2sinx为奇函数

复合性质

  • y = f ( u ) ; u = g ( x ) y=f(u);u=g(x) y=f(u);u=g(x), y ( x ) = ( f ∘ g ) ( x ) = f ( g ( x ) ) y(x)=(f\circ g)(x)=f(g(x)) y(x)=(fg)(x)=f(g(x))的奇偶性

    • 例如, f ( u ) = 1 u f(u)=\frac{1}{u} f(u)=u1; u = g ( x ) = x 2 u=g(x)=x^2 u=g(x)=x2
    • 显然 f ( u ) f(u) f(u)是个奇函数(反比例函数); g ( x ) g(x) g(x)是偶函数; y ( x ) = 1 x 2 y(x)=\frac{1}{x^2} y(x)=x21则是偶函数
  • 为了便于提高推导效率,沿用前面的 o ( x ) , e ( x ) o(x),e(x) o(x),e(x)的含义(分别表示奇函数和偶函数)

奇函数复合偶函数

y 1 ( x ) = o ( e ( x ) ) y_1(x)=o(e(x)) y1(x)=o(e(x))

  • y 1 ( − x ) = o ( e ( − x ) ) y_1(-x)=o(e(-x)) y1(x)=o(e(x))= o ( e ( x ) ) = y ( x ) o(e(x))=y(x) o(e(x))=y(x)
  • 特例助记: y ( u ) = u ; u = x 2 ; y ( x ) = x 2 ( 偶函数 ) y(u)=u;u=x^2;y(x)=x^2(偶函数) y(u)=u;u=x2;y(x)=x2(偶函数)

偶函数复合奇函数

y 1 ( x ) = e ( o ( x ) ) y_1(x)=e(o(x)) y1(x)=e(o(x))

  • y 1 ( − x ) = e ( o ( − x ) ) = e ( − o ( x ) ) = e ( o ( x ) ) = y 1 ( x ) y_1(-x)=e(o(-x))=e(-o(x))=e(o(x))=y_1(x) y1(x)=e(o(x))=e(o(x))=e(o(x))=y1(x)

奇函数复合奇函数

y 2 ( x ) = o 1 ( o 2 ( x ) ) y_2(x)=o_1(o_2(x)) y2(x)=o1(o2(x))

  • y 2 ( − x ) = o 1 ( o 2 ( − x ) ) = o 1 ( − o 2 ( x ) ) = − o 1 ( o 2 ( x ) ) = − y 2 ( x ) y_2(-x)=o_1(o_2(-x))=o_1(-o_2(x))=-o_1(o_2(x))=-y_2(x) y2(x)=o1(o2(x))=o1(o2(x))=o1(o2(x))=y2(x)

偶函数复合偶函数

y 3 ( x ) = e 1 ( e 2 ( x ) ) y_3(x)=e_1(e_2(x)) y3(x)=e1(e2(x))

  • y 3 ( − x ) = e 1 ( e 2 ( − x ) ) = e 1 ( e 2 ( x ) ) = y 3 ( x ) y_3(-x)=e_1(e_2(-x))=e_1(e_2(x))=y_3(x) y3(x)=e1(e2(x))=e1(e2(x))=y3(x)
    • 其中 , 记 u = e 2 ( x ) ; e 1 ( − e 2 ( x ) ) = e 1 ( − u ) = e 1 ( u ) = e 1 ( e 2 ( x ) ) 其中,记u=e_2(x);e_1(-e_2(x))=e_1(-u)=e_1(u)=e_1(e_2(x)) 其中,u=e2(x);e1(e2(x))=e1(u)=e1(u)=e1(e2(x))

奇偶性小结🎈

  • 奇函数 ± \pm ± 奇函数=奇函数

  • 偶函数 ± \pm ± 偶函数=偶函数

  • 奇函数 ± \pm ± 偶函数(具体情况具体分析)

  • 乘法和除法运算得到的新函数的奇偶性判定方式十分一致

    • 奇偶性相同的函数乘积或商是偶函数
    • 奇偶性不同的函数乘积或商是奇函数
    • 乘以或除以一个偶函数不改变原函数的奇偶性
  • 仅在奇函数相互复合的情况下才得到奇函数

    • 偶函数与任何奇函数或偶函数复合都得到偶函数,
    • 反之亦然:任何奇函数或偶函数与偶函数复合都得到偶函数

倍乘非零常数不改变奇偶性

  • 设k为非零常数 t ( x ) = k f ( x ) ; t ( − x ) = k f ( − x ) t(x)=kf(x);t(-x)=kf(-x) t(x)=kf(x);t(x)=kf(x),容易通过奇偶性定义验证, t ( x ) t(x) t(x)的奇偶性和 f ( x ) f(x) f(x)一致;
  • 事实上,常数是特殊函数(常数函数),而且是偶函数,从而 f ( x ) f(x) f(x)乘偶函数不改变奇偶性

奇函数和偶函数表示定义域对称函数

  • 定义域关于原点对称的普通函数 f ( x ) f(x) f(x),可以表示为奇函数偶函数之和

  • f ( x ) = 1 2 h ( x ) + 1 2 g ( x ) f(x)=\frac{1}{2}h(x)+\frac{1}{2}g(x) f(x)=21h(x)+21g(x), ( D f = ( − l , l ) ) (D_f=(-l,l)) (Df=(l,l))

    • h ( x ) = f ( x ) − f ( − x ) h(x)=f(x)-f(-x) h(x)=f(x)f(x);

    • g ( x ) = f ( x ) + f ( − x ) g(x)=f(x)+f(-x) g(x)=f(x)+f(x)

    • h ( x ) , g ( x ) h(x),g(x) h(x),g(x)分别是奇函数和偶函数

      • h ( − x ) = − h ( x ) h(-x)=-h(x) h(x)=h(x)
      • g ( − x ) = g ( x ) g(-x)=g(x) g(x)=g(x)
  • 所以结论成立

这篇关于EM@函数奇偶性性质@函数四则运算和复合运算后的奇偶性判断的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/186281

相关文章

利用c++判断水仙花数并输出示例代码

《利用c++判断水仙花数并输出示例代码》水仙花数是指一个三位数,其各位数字的立方和恰好等于该数本身,:本文主要介绍利用c++判断水仙花数并输出的相关资料,文中通过代码介绍的非常详细,需要的朋友可以... 以下是使用C++实现的相同逻辑代码:#include <IOStream>#include <vec

Mybatis对MySQL if 函数的不支持问题解读

《Mybatis对MySQLif函数的不支持问题解读》接手项目后,为了实现多租户功能,引入了Mybatis-plus,发现之前运行正常的SQL语句报错,原因是Mybatis不支持MySQL的if函... 目录MyBATis对mysql if 函数的不支持问题描述经过查询网上搜索资料找到原因解决方案总结Myb

Python容器转换与共有函数举例详解

《Python容器转换与共有函数举例详解》Python容器是Python编程语言中非常基础且重要的概念,它们提供了数据的存储和组织方式,下面:本文主要介绍Python容器转换与共有函数的相关资料,... 目录python容器转换与共有函数详解一、容器类型概览二、容器类型转换1. 基本容器转换2. 高级转换示

pandas使用apply函数给表格同时添加多列

《pandas使用apply函数给表格同时添加多列》本文介绍了利用Pandas的apply函数在DataFrame中同时添加多列,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、Pandas使用apply函数给表格同时添加多列二、应用示例一、Pandas使用apply函

Python中Namespace()函数详解

《Python中Namespace()函数详解》Namespace是argparse模块提供的一个类,用于创建命名空间对象,它允许通过点操作符访问数据,比字典更易读,在深度学习项目中常用于加载配置、命... 目录1. 为什么使用 Namespace?2. Namespace 的本质是什么?3. Namesp

MySQL中如何求平均值常见实例(AVG函数详解)

《MySQL中如何求平均值常见实例(AVG函数详解)》MySQLavg()是一个聚合函数,用于返回各种记录中表达式的平均值,:本文主要介绍MySQL中用AVG函数如何求平均值的相关资料,文中通过代... 目录前言一、基本语法二、示例讲解1. 计算全表平均分2. 计算某门课程的平均分(例如:Math)三、结合

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数