EM@函数奇偶性性质@函数四则运算和复合运算后的奇偶性判断

2023-10-11 06:44

本文主要是介绍EM@函数奇偶性性质@函数四则运算和复合运算后的奇偶性判断,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • abstract
      • 奇函数和偶函数
    • 函数奇偶性性质
      • 函数记号声明
    • 四则运算性质
      • 和差
      • 乘积
    • 复合性质
      • 奇函数复合偶函数
      • 偶函数复合奇函数
      • 奇函数复合奇函数
      • 偶函数复合偶函数
    • 奇偶性小结🎈
      • 倍乘非零常数不改变奇偶性
    • 奇函数和偶函数表示定义域对称函数

abstract

  • 函数奇偶性性质:函数四则运算和复合运算后的奇偶性判断

奇函数和偶函数

  • f ( x ) f(x) f(x)的定义域关于原点对称,则当
    • f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x),称 f ( x ) f(x) f(x)为偶函数
    • f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x),称 f ( x ) f(x) f(x)为奇函数

函数奇偶性性质

函数记号声明

  • o ( x ) , o i ( x ) o(x),o_{i}(x) o(x),oi(x)均表示奇函数
  • e ( x ) , e i ( x ) e(x),e_i(x) e(x),ei(x)均表示偶函数

四则运算性质

和差

  • 偶(奇)函数相加得到的新函数仍为偶(奇)函数

  • 奇函数相加减,得到的新函数还是奇函数

    • h 1 ( x ) = o 1 ( x ) + o 2 ( x ) h_1(x)=o_1(x)+o_2(x) h1(x)=o1(x)+o2(x)
      • h 1 ( − x ) = o 1 ( − x ) + o 2 ( − x ) = − o 1 ( x ) − o 2 ( x ) = − ( o 1 ( x ) + o 2 ( x ) ) = − h 1 ( x ) h_1(-x)=o_1(-x)+o_2(-x)=-o_1(x)-o_2(x)=-(o_1(x)+o_2(x))=-h_1(x) h1(x)=o1(x)+o2(x)=o1(x)o2(x)=(o1(x)+o2(x))=h1(x)
    • h 1 ( x ) = o 1 ( x ) − o 2 ( x ) h_1(x)=o_1(x)-o_2(x) h1(x)=o1(x)o2(x)
      • h 1 ( − x ) = o 1 ( − x ) − o 2 ( − x ) = − o 1 ( x ) + o 2 ( x ) = − h 1 ( x ) h_1(-x)=o_1(-x)-o_2(-x)=-o_1(x)+o_2(x)=-h_1(x) h1(x)=o1(x)o2(x)=o1(x)+o2(x)=h1(x)
    • 合起来写: h 2 ( x ) = o 1 ( x ) ± o 2 ( x ) h_2(x)=o_1(x)\pm o_2(x) h2(x)=o1(x)±o2(x)
      • h 1 ( − x ) = o 1 ( − x ) ± o 2 ( − x ) h_1(-x)=o_1(-x)\pm o_2(-x) h1(x)=o1(x)±o2(x)= − o 1 ( x ) ± ( − o 2 ( x ) ) = − h 1 ( x ) -o_1(x)\pm(-o_2(x))=-h_1(x) o1(x)±(o2(x))=h1(x)
  • 偶函数相加减得到的新函数仍为偶函数

    • h 2 ( x ) = e 1 ( x ) ± e 2 ( x ) h_2(x)=e_1(x)\pm e_2(x) h2(x)=e1(x)±e2(x)
      • h 2 ( − x ) = e 1 ( − x ) ± e 2 ( − x ) = ( e 1 ( x ) ± ( e 2 ( x ) ) = h 2 ( x ) h_2(-x)=e_1(-x)\pm e_2(-x)=(e_1(x)\pm (e_2(x))=h_2(x) h2(x)=e1(x)±e2(x)=(e1(x)±(e2(x))=h2(x)
  • 奇函数 ± \pm ±偶函数的结果没有一般性的定论

乘积

  1. h 1 ( x ) = o ( x ) e ( x ) h_1(x)=o(x)e(x) h1(x)=o(x)e(x)
    • h 1 ( − x ) = o ( − x ) e ( − x ) = − o ( x ) e ( x ) = − h 1 ( x ) h_1(-x)=o(-x)e(-x)=-o(x)e(x)=-h_1(x) h1(x)=o(x)e(x)=o(x)e(x)=h1(x)
  2. h 2 ( x ) = o 1 ( x ) o 2 ( x ) h_2(x)=o_1(x)o_2(x) h2(x)=o1(x)o2(x)
    • h 2 ( − x ) = o 1 ( − x ) o 2 ( − x ) = ( − o 1 ( x ) ) ( − o 2 ( x ) ) = o 1 ( x ) o 2 ( x ) = h 2 ( x ) h_2(-x)=o_1(-x)o_2(-x)=(-o_1(x))(-o_2(x))=o_1(x)o_2(x)=h_2(x) h2(x)=o1(x)o2(x)=(o1(x))(o2(x))=o1(x)o2(x)=h2(x)
  3. h 3 ( x ) = e 1 ( x ) e 2 ( x ) h_3(x)=e_1(x)e_2(x) h3(x)=e1(x)e2(x)
    • h 3 ( − x ) = e 1 ( − x ) e 2 ( − x ) = e 1 ( x ) e 2 ( x ) = h 3 ( x ) h_3(-x)=e_1(-x)e_2(-x)=e_1(x)e_2(x)=h_3(x) h3(x)=e1(x)e2(x)=e1(x)e2(x)=h3(x)

上述三条分别表明:

  • 奇函数乘偶函数结果为奇函数
  • 偶函数乘偶函数结果为偶函数
  • 奇函数乘奇函数结果为偶函数

  • 令: y ( x ) = f ( x ) g ( x ) y(x)=\frac{f(x)}{g(x)} y(x)=g(x)f(x), y ( − x ) = f ( − x ) g ( − x ) y(-x)=\frac{f(-x)}{g(-x)} y(x)=g(x)f(x)
    1. y ( x ) = o 1 ( x ) o 2 ( x ) y(x)=\frac{o_1(x)}{o_2(x)} y(x)=o2(x)o1(x), y ( − x ) = y ( x ) y(-x)=y(x) y(x)=y(x)
    2. y ( x ) = o ( x ) e ( x ) y(x)=\frac{o(x)}{e(x)} y(x)=e(x)o(x),或 y ( x ) = e ( x ) o ( x ) y(x)=\frac{e(x)}{o(x)} y(x)=o(x)e(x),都有 y ( − x ) = − y ( x ) y(-x)=-y(x) y(x)=y(x)
    3. y ( x ) = e 1 ( x ) e 2 ( x ) y(x)=\frac{e_1(x)}{e_2(x)} y(x)=e2(x)e1(x),则 y ( − x ) = y ( x ) y(-x)=y(x) y(x)=y(x)
    • 分子分母奇偶性相同时,结果为偶函数
    • 分子分母奇偶性不同时,结果为奇函数
  • 例如:
    • sin ⁡ x x \frac{\sin{x}}{x} xsinx为偶函数,而 sin ⁡ x x 2 \frac{\sin{x}}{x^2} x2sinx为奇函数

复合性质

  • y = f ( u ) ; u = g ( x ) y=f(u);u=g(x) y=f(u);u=g(x), y ( x ) = ( f ∘ g ) ( x ) = f ( g ( x ) ) y(x)=(f\circ g)(x)=f(g(x)) y(x)=(fg)(x)=f(g(x))的奇偶性

    • 例如, f ( u ) = 1 u f(u)=\frac{1}{u} f(u)=u1; u = g ( x ) = x 2 u=g(x)=x^2 u=g(x)=x2
    • 显然 f ( u ) f(u) f(u)是个奇函数(反比例函数); g ( x ) g(x) g(x)是偶函数; y ( x ) = 1 x 2 y(x)=\frac{1}{x^2} y(x)=x21则是偶函数
  • 为了便于提高推导效率,沿用前面的 o ( x ) , e ( x ) o(x),e(x) o(x),e(x)的含义(分别表示奇函数和偶函数)

奇函数复合偶函数

y 1 ( x ) = o ( e ( x ) ) y_1(x)=o(e(x)) y1(x)=o(e(x))

  • y 1 ( − x ) = o ( e ( − x ) ) y_1(-x)=o(e(-x)) y1(x)=o(e(x))= o ( e ( x ) ) = y ( x ) o(e(x))=y(x) o(e(x))=y(x)
  • 特例助记: y ( u ) = u ; u = x 2 ; y ( x ) = x 2 ( 偶函数 ) y(u)=u;u=x^2;y(x)=x^2(偶函数) y(u)=u;u=x2;y(x)=x2(偶函数)

偶函数复合奇函数

y 1 ( x ) = e ( o ( x ) ) y_1(x)=e(o(x)) y1(x)=e(o(x))

  • y 1 ( − x ) = e ( o ( − x ) ) = e ( − o ( x ) ) = e ( o ( x ) ) = y 1 ( x ) y_1(-x)=e(o(-x))=e(-o(x))=e(o(x))=y_1(x) y1(x)=e(o(x))=e(o(x))=e(o(x))=y1(x)

奇函数复合奇函数

y 2 ( x ) = o 1 ( o 2 ( x ) ) y_2(x)=o_1(o_2(x)) y2(x)=o1(o2(x))

  • y 2 ( − x ) = o 1 ( o 2 ( − x ) ) = o 1 ( − o 2 ( x ) ) = − o 1 ( o 2 ( x ) ) = − y 2 ( x ) y_2(-x)=o_1(o_2(-x))=o_1(-o_2(x))=-o_1(o_2(x))=-y_2(x) y2(x)=o1(o2(x))=o1(o2(x))=o1(o2(x))=y2(x)

偶函数复合偶函数

y 3 ( x ) = e 1 ( e 2 ( x ) ) y_3(x)=e_1(e_2(x)) y3(x)=e1(e2(x))

  • y 3 ( − x ) = e 1 ( e 2 ( − x ) ) = e 1 ( e 2 ( x ) ) = y 3 ( x ) y_3(-x)=e_1(e_2(-x))=e_1(e_2(x))=y_3(x) y3(x)=e1(e2(x))=e1(e2(x))=y3(x)
    • 其中 , 记 u = e 2 ( x ) ; e 1 ( − e 2 ( x ) ) = e 1 ( − u ) = e 1 ( u ) = e 1 ( e 2 ( x ) ) 其中,记u=e_2(x);e_1(-e_2(x))=e_1(-u)=e_1(u)=e_1(e_2(x)) 其中,u=e2(x);e1(e2(x))=e1(u)=e1(u)=e1(e2(x))

奇偶性小结🎈

  • 奇函数 ± \pm ± 奇函数=奇函数

  • 偶函数 ± \pm ± 偶函数=偶函数

  • 奇函数 ± \pm ± 偶函数(具体情况具体分析)

  • 乘法和除法运算得到的新函数的奇偶性判定方式十分一致

    • 奇偶性相同的函数乘积或商是偶函数
    • 奇偶性不同的函数乘积或商是奇函数
    • 乘以或除以一个偶函数不改变原函数的奇偶性
  • 仅在奇函数相互复合的情况下才得到奇函数

    • 偶函数与任何奇函数或偶函数复合都得到偶函数,
    • 反之亦然:任何奇函数或偶函数与偶函数复合都得到偶函数

倍乘非零常数不改变奇偶性

  • 设k为非零常数 t ( x ) = k f ( x ) ; t ( − x ) = k f ( − x ) t(x)=kf(x);t(-x)=kf(-x) t(x)=kf(x);t(x)=kf(x),容易通过奇偶性定义验证, t ( x ) t(x) t(x)的奇偶性和 f ( x ) f(x) f(x)一致;
  • 事实上,常数是特殊函数(常数函数),而且是偶函数,从而 f ( x ) f(x) f(x)乘偶函数不改变奇偶性

奇函数和偶函数表示定义域对称函数

  • 定义域关于原点对称的普通函数 f ( x ) f(x) f(x),可以表示为奇函数偶函数之和

  • f ( x ) = 1 2 h ( x ) + 1 2 g ( x ) f(x)=\frac{1}{2}h(x)+\frac{1}{2}g(x) f(x)=21h(x)+21g(x), ( D f = ( − l , l ) ) (D_f=(-l,l)) (Df=(l,l))

    • h ( x ) = f ( x ) − f ( − x ) h(x)=f(x)-f(-x) h(x)=f(x)f(x);

    • g ( x ) = f ( x ) + f ( − x ) g(x)=f(x)+f(-x) g(x)=f(x)+f(x)

    • h ( x ) , g ( x ) h(x),g(x) h(x),g(x)分别是奇函数和偶函数

      • h ( − x ) = − h ( x ) h(-x)=-h(x) h(x)=h(x)
      • g ( − x ) = g ( x ) g(-x)=g(x) g(x)=g(x)
  • 所以结论成立

这篇关于EM@函数奇偶性性质@函数四则运算和复合运算后的奇偶性判断的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/186281

相关文章

Java8需要知道的4个函数式接口简单教程

《Java8需要知道的4个函数式接口简单教程》:本文主要介绍Java8中引入的函数式接口,包括Consumer、Supplier、Predicate和Function,以及它们的用法和特点,文中... 目录什么是函数是接口?Consumer接口定义核心特点注意事项常见用法1.基本用法2.结合andThen链

MySQL 日期时间格式化函数 DATE_FORMAT() 的使用示例详解

《MySQL日期时间格式化函数DATE_FORMAT()的使用示例详解》`DATE_FORMAT()`是MySQL中用于格式化日期时间的函数,本文详细介绍了其语法、格式化字符串的含义以及常见日期... 目录一、DATE_FORMAT()语法二、格式化字符串详解三、常见日期时间格式组合四、业务场景五、总结一、

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

golang panic 函数用法示例详解

《golangpanic函数用法示例详解》在Go语言中,panic用于触发不可恢复的错误,终止函数执行并逐层向上触发defer,最终若未被recover捕获,程序会崩溃,recover用于在def... 目录1. panic 的作用2. 基本用法3. recover 的使用规则4. 错误处理建议5. 常见错

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

Java function函数式接口的使用方法与实例

《Javafunction函数式接口的使用方法与实例》:本文主要介绍Javafunction函数式接口的使用方法与实例,函数式接口如一支未完成的诗篇,用Lambda表达式作韵脚,将代码的机械美感... 目录引言-当代码遇见诗性一、函数式接口的生物学解构1.1 函数式接口的基因密码1.2 六大核心接口的形态学

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for