元学习Meta-Learning—授人以鱼不如授人以渔

2023-10-10 18:20

本文主要是介绍元学习Meta-Learning—授人以鱼不如授人以渔,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 背景
  • Meta-Learning的数据划分
  • MAML算法
  • MAML的思考
  • 参考

背景

我们知道现在深度学习在使用大型数据集掌握一项任务(检测,分类等)方面取得了巨大的成功,但这并不是真正我们追求的“人工智能”。具体来说,我们可能训练了一个能做物理题很高分的学生,但是他也只能做物理题而已,面对数学题他只能吞下零分的命运;其次,在面对新的任务(数学题)的时候,我们的学生仍然需要大量的数据(数学题)进行训练,而在学习物理的时候积累下的学习方法(先验知识)却基本帮不上忙。

以上的问题可以抽象为一个具体的问题:现在的深度学习往往只是在学习某一类特定的任务,而不是在学习自身“学习”的能力,这也是Meta-Learning的定义:学习如何学习的能力,而不是学习具体的某一个任务。假如我们的算法学会了怎么学习,当面对一个新的任务的时候,有了学习能力(先验知识)就可以只用少量的数据进行快速的学习,而这种学习如何学习的方式才是真正的“人工智能”。

Meta-Learning 的算法有很多,有些算法可以针对不同的训练任务,输出不同的神经网络结构和超参数,例如 Neural Architecture Search (NAS) 和 AutoML。本文主要介绍另外一种Meta-Learning算法:MAML,它不改变深度神经网络的结构,只改变网络的初始化参数。

Meta-Learning的数据划分

首先我先用一段不严谨的语言描述一下Meta-Learning:我们假定传统的深度学习算法是给100道化学题让他学会做化学题(再用50道化学题进行测试),MAML算法则是用5道数学题,5道语文题,5道物理题来让算法学会做5道化学题,具体来说先通过5道数学、5道语文、5道物理题来让算法掌握学习的能力(分别用2道数学、2道语文、2道物理题来验证学习效果),然后再给一点点化学题(5题)训练就可以让算法掌握化学题的做法。如果说传统深度学习是在学习一个任务,那么MAML则是在遍历多个任务后找到一组敏感的参数,在新任务到来的时候帮助模型利用这组参数快速地将先验知识转移到新任务上。自然地,Meta-Learning的数据集肯定不是像传统DL那样简单划分为训练集和测试集:

如上图所示,在Meta-Learning上,我们不再直接叫train和test了,而是叫Meta-trainMeta-test。在上图中,每一行都是一个task(例如数学题、物理题),包含了task的train set和test set,图中展示就是所谓的5way 1shot 设定,也就是一个task包含5个类,每一个类一个训练样本,然后给你2个测试样本测试。我们可以把每一个task当做一个Meta-Learning的训练样本。我们要通过多种task的训练,从而在Meta-test的时候也就是在新的task上取得好效果。出于习惯,我们把meta-training中的training data叫做support set、test set叫做query set

这部分主要是掌握Meta-Learning的数据集是如何划分的即可,具体MAML的细节下一部分会具体阐述。

MAML算法

MAML算法主要分成三步:

  • (1)采样任务数据:首先会从meta-training里面采样一個batch size的training data,比如batch size为3的时候我们就会随机采样3个任务的数据(比如做数学题,做物理题,做语文题)。
  • (2)计算梯度和参数:对 training data 中每一个 task 以及其对应的 label 计算属于每个 Task 的 gradient 与更新后的 model 参数。(这里是第一次计算梯度
  • (3)更新模型:当有了每个 task 利用 training data of meta-train(即support set)得到的新模型参数后,可以利用test data of meta-train(即query set)验证,並且加总所有任务的loss,对原本模型参数(注意不是对第一次求的梯度参数)微分并真正的更新一次参数。(第二次计算梯度

MAML的思考

整个算法的流程还是比较简洁的,读者可能会觉得为什么不和往常一样计算一次梯度就好了,为什么要算两次,我的理解是:对于一个有很多任务要学习的模型,我们要优化这个模型,第一个想法可能是找到一个点(参数空间上)让所有的任务在这个点是最优解,听起来很强,但想想都觉得很困难,平时我们训练单一任务SGD找最优解都要迭代那么久,怎么可能一下子就可以找到一个点是所有任务的最优解?所以MAML把问题转换为找到一个点,让这个点距离各个任务的最优解最近,让这个点只需要简单地梯度下降一次就可以找到最优解,显然这种想法更加的科学。

回到我们一开始的例子:我们想在计算机视觉漫谈公众号发掘一位有考上清华潜力的全才,只计算一次梯度的想法相当于我先在这些人里面找语文满分的,然后在语文满分的中找数学满分的,再在数学满分里面找英语满分的……,这肯定很难。而计算两次梯度的想法相当于我在所有关注计算机视觉漫谈公众号中的人中找到很聪明的那个,这个人不一定语文第一名,但他很聪明,全能型选手,学啥都很快很好,显然通过第二种方法更能挖掘出一位有考上清华潜力的全才。

另外有接触过迁移学习的同学可能会觉得元学习和迁移学习很像,在我的理解上两者其实没有明显的界限,这里引用王晋东博士的话:你可以说元学习是强调从不同的若干小任务小样本来学习一个对未知样本未知类别都有好的判别和泛化能力的模型,但其实你想想,难道这不就是知识迁移吗?从迁移上来看,你可以说学习一个可迁移的特征或模型,可以从A迁移到B。但这些可以被迁移过提纯的东西,难道不能被叫做元知识吗?所以其实是殊途同归的,都应该一起联系起来看。

参考

  • (1)论文:https://arxiv.org/pdf/1703.03400.pdf
  • (2)Chelsea Finn ‘s blog https://bair.berkeley.edu/blog/2017/07/18/learning-to-learn/

这篇关于元学习Meta-Learning—授人以鱼不如授人以渔的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/182237

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件