飞桨课程创意项目:基于Paddlehub实现人像背景虚化

2023-10-10 14:10

本文主要是介绍飞桨课程创意项目:基于Paddlehub实现人像背景虚化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

利用deeplabv3p_xception65_humanseg与PIL.ImageFilter模块实现人像背景虚化

感兴趣的同志可以直接点AI Studio项目地址,可直接运行 :[基于paddlehub实现人像背景虚化]

设计思路
在这里插入图片描述

# 首先安装 paddlehub
!pip install paddlehub --upgrade
!pip install paddlepaddle --upgrade
# 导入包
import cv2
import paddlehub as hub
import matplotlib.pyplot as plt 
import matplotlib.image as mpimg
import numpy as np
import math
from PIL import Image, ImageFilter

第一步—获取人像

module = hub.Module(name="deeplabv3p_xception65_humanseg")
picture = 'Taylor2.jpg'
results = module.segmentation(images=[cv2.imread(picture)], visualization=True, output_dir = './humanseg_output') 
# 抠图路径 留作后用
fore_image = results[0]['save_path']
plt.figure(figsize=(10,10))
# 原图
f = plt.subplot(121)
show_picture = mpimg.imread(picture)
plt.imshow(show_picture)
plt.axis('off')
# 抠图
show_fore_image = mpimg.imread(results[0]['save_path'])
f = plt.subplot(122)
plt.imshow(show_fore_image)
plt.axis('off')
plt.show

有关paddlehub中的deeplabv3p_xception65_humanseg请点这里

在这里插入图片描述

第二步—虚化原始图片

# picture = 'Taylor2.jpg'
back_image = 'blured'+picture # 虚化图片名字
img = Image.open(picture)
blured_img = img.filter(ImageFilter.BLUR)  # 使用标准模糊
blured_img.save(back_image, quality=100)
show_blured_img = mpimg.imread(back_image)
plt.figure(figsize=(10,10))
# 原图 
f = plt.subplot(121)
show_picture = mpimg.imread(picture)
plt.imshow(show_picture)
plt.axis('off')
# 虚化后的图
f = plt.subplot(122)
plt.imshow(show_blured_img)
plt.axis('off')
plt.show

在这里插入图片描述

第三步—加权合成两张图并展示结果

# 定义加权合成函数
def images_fusion(fore_image, back_image, save_name):"""将抠出的人物图像换背景fore_image: 前景图片,抠出的人物图片back_image: 背景图片"""# 读入图片back_image = Image.open(back_image).convert('RGB')# fore_image = Image.open(fore_image).resize(back_image.size)  统一尺寸, 本项目不需要resizefore_image = Image.open(fore_image)# 图片加权合成scope_map = np.array(fore_image)[:, :, -1] / 255scope_map = scope_map[:, :, np.newaxis]scope_map = np.repeat(scope_map, repeats=3, axis=2)res_image = np.multiply(scope_map, np.array(fore_image)[:, :, :3]) + np.multiply((1 - scope_map),np.array(back_image))# 保存图片res_image = Image.fromarray(np.uint8(res_image))res_image.save(save_name)
# 展示结果
images_fusion(fore_image=fore_image, back_image=back_image, save_name='result.jpg')
img = mpimg.imread("result.jpg")# 原图
plt.figure(figsize=(10,10))
f = plt.subplot(121)
show_picture = mpimg.imread(picture)
plt.imshow(show_picture)
plt.axis('off')
f = plt.subplot(122)
# 合成后的背景虚化图
plt.imshow(img)
plt.axis('off')
plt.show()

在这里插入图片描述

封装成函数

# 获取分割的人像图片
def get_fore_image(picture):module = hub.Module(name="deeplabv3p_xception65_humanseg")results = module.segmentation(images=[cv2.imread(picture)], visualization=True, output_dir = './humanseg_output')fore_image = results[0]['save_path']return fore_image# 获取虚化图片
def  get_back_image(picture):back_image = 'blured'+picture # 虚化图片名字img = Image.open(picture)blured_img = img.filter(ImageFilter.BLUR)  # 使用标准模糊blured_img.save(back_image, quality=100)return back_image# 融合虚化图片和人像图片
def images_fusion_final(fore_image, back_image, picture):"""将抠出的人物图像换背景fore_image: 前景图片,抠出的人物图片back_image: 背景图片"""# 读入图片back_image = Image.open(back_image).convert('RGB')# fore_image = Image.open(fore_image).resize(back_image.size)  统一尺寸, 本项目不需要resizefore_image = Image.open(fore_image)# 图片加权合成scope_map = np.array(fore_image)[:, :, -1] / 255scope_map = scope_map[:, :, np.newaxis]scope_map = np.repeat(scope_map, repeats=3, axis=2)res_image = np.multiply(scope_map, np.array(fore_image)[:, :, :3]) + np.multiply((1 - scope_map),np.array(back_image))# 保存图片res_image = Image.fromarray(np.uint8(res_image))picture_result = 'result_'+picture # 保存的名字res_image.save(picture_result)return picture_resultdef show_result(picture):fore_image = get_fore_image(picture)back_image = get_back_image(picture)picture_result = images_fusion_final(fore_image,back_image,picture)img = mpimg.imread(picture_result)# 原图plt.figure(figsize=(10,10))f = plt.subplot(121)show_picture = mpimg.imread(picture)plt.imshow(show_picture)plt.axis('off')# 合成后的背景虚化图f = plt.subplot(122)plt.imshow(img)plt.axis('off')plt.show()

效果展示

# 可以分别执行观察效果
show_result(picture='test1.jpg')
# show_result(picture='test2.jpg')
# show_result(picture='Taylor2.jpg')

在这里插入图片描述
AI Stuido项目地址 :基于paddlehub实现人像背景虚化

总结

  1. 本项目采用虚化图+人像图合成的方式完成背景虚化,因此人像分割是否精确直接决定最终效果
  2. 对于前景后景区分度明显且人物较近的图片,实现效果最佳
  3. 现在在网上找一张没有虚化过背景的图片来做测验实在太难了,只能找人家的私房照了…
  4. 缺点:由于是两张图的加权和,所以合成图像中的任务可能也很会有些模糊的效果。

参考资料(项目):基于PaddleHub实现美颜及背景更换

这篇关于飞桨课程创意项目:基于Paddlehub实现人像背景虚化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/180961

相关文章

Spring Retry 实现乐观锁重试实践记录

《SpringRetry实现乐观锁重试实践记录》本文介绍了在秒杀商品SKU表中使用乐观锁和MybatisPlus配置乐观锁的方法,并分析了测试环境和生产环境的隔离级别对乐观锁的影响,通过简单验证,... 目录一、场景分析 二、简单验证 2.1、可重复读 2.2、读已提交 三、最佳实践 3.1、配置重试模板

Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)

《Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)》文章介绍了如何使用dhtmlx-gantt组件来实现公司的甘特图需求,并提供了一个简单的Vue组件示例,文章还分享了一... 目录一、首先 npm 安装插件二、创建一个vue组件三、业务页面内 引用自定义组件:四、dhtmlx

Vue ElementUI中Upload组件批量上传的实现代码

《VueElementUI中Upload组件批量上传的实现代码》ElementUI中Upload组件批量上传通过获取upload组件的DOM、文件、上传地址和数据,封装uploadFiles方法,使... ElementUI中Upload组件如何批量上传首先就是upload组件 <el-upl

Docker部署Jenkins持续集成(CI)工具的实现

《Docker部署Jenkins持续集成(CI)工具的实现》Jenkins是一个流行的开源自动化工具,广泛应用于持续集成(CI)和持续交付(CD)的环境中,本文介绍了使用Docker部署Jenkins... 目录前言一、准备工作二、设置变量和目录结构三、配置 docker 权限和网络四、启动 Jenkins

SpringBoot项目注入 traceId 追踪整个请求的日志链路(过程详解)

《SpringBoot项目注入traceId追踪整个请求的日志链路(过程详解)》本文介绍了如何在单体SpringBoot项目中通过手动实现过滤器或拦截器来注入traceId,以追踪整个请求的日志链... SpringBoot项目注入 traceId 来追踪整个请求的日志链路,有了 traceId, 我们在排

Python3脚本实现Excel与TXT的智能转换

《Python3脚本实现Excel与TXT的智能转换》在数据处理的日常工作中,我们经常需要将Excel中的结构化数据转换为其他格式,本文将使用Python3实现Excel与TXT的智能转换,需要的可以... 目录场景应用:为什么需要这种转换技术解析:代码实现详解核心代码展示改进点说明实战演练:从Excel到

如何使用CSS3实现波浪式图片墙

《如何使用CSS3实现波浪式图片墙》:本文主要介绍了如何使用CSS3的transform属性和动画技巧实现波浪式图片墙,通过设置图片的垂直偏移量,并使用动画使其周期性地改变位置,可以创建出动态且具有波浪效果的图片墙,同时,还强调了响应式设计的重要性,以确保图片墙在不同设备上都能良好显示,详细内容请阅读本文,希望能对你有所帮助...

C# string转unicode字符的实现

《C#string转unicode字符的实现》本文主要介绍了C#string转unicode字符的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录1. 获取字符串中每个字符的 Unicode 值示例代码:输出:2. 将 Unicode 值格式化

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi