Python数据结构与算法-RAS算法(p96)

2023-10-10 09:10

本文主要是介绍Python数据结构与算法-RAS算法(p96),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、RSA加密算法简介

1、加密算法概念

  • 传统密码: 加密算法是秘密的

  • 现代密码系统:加密算法是公开的,密钥是秘密的;(密钥可能是随机生成的,与他人不一致)

  • 对称加密—加密和解密用的同一个密钥

  • 非对称加密—加密和解密用的两个密钥,RSA算法属于非对称加密

2、RSA加密算法

  • RSA非对称加密系统:

  • 公钥:用来加密,是公开的 (一般用来加密)

  • 私钥:用来解密,是私有的 (个人用于解密)

  • 例如:

上图所示,Bob用公钥加密M文件,Bob传送给Alice。传送过程中,窃密者窃取M文件得到的加密后的信息,无法解读。Alice使用私钥解读M文件。

二、RSA算法的加密过程

1、RSA加密算法密钥获取过程

  • 随机选取两个质数p和q;

  • 计算n=pq

  • 选取一个与互质的小奇数e,=(p-1)(q-1)

  • 对模,计算e的乘法逆元d,即满足(e*d) mod = 1

  • 公钥(e,n) 私钥(d, n)

2、RSA加密算法密钥获取演示

(1)随机选取两个质数p和q;

质数是指约数只有1和本身的数。

质数越大,密码破解难度越大,实际中的质数是很大的。

>>> p = 53
>>> q = 59

(2)计算n=pq

>>> n = p*q
>>> n
3127

(3)选取一个与互质的小奇数e,=(p-1)(q-1)

互质是指最大公约数为1,奇数是与偶数相对的数,不能被2整除。

>>> fai = (p-1)*(q-1) #fai(n)
>>> fai
301
>>> e = 3

(4)对模,计算e的乘法逆元d,即满足(e*d) mod = 1

找到一个d,满足(e * d) mod = 1(可运用费马小定理,欧几里得算法求解)

>>> d = 2011 # 这里对应的d是2011,可用费马定理求解(具体求解可自行学习)
>>> (e * d) % fai
1

(5)公钥(e,n) 私钥(d, n)

>>> e
3
>>> n
3127
>>> d
2011

公钥:(3, 3127); 私钥(2011,3027)

3、加密解码过程

  • 加密过程: c=(m^e)mod n (公钥)

  • c:密文

  • m:明文

  • n^e: n的e次方,在python中是n ** e

  • 解密过程: m =(c^d)mod n (密钥)

(1)加密过程(终端运行)

>>> m = 87 # 明文
>>> c = (m ** e)%n # 加密
>>> c # 密文
1833

(2)解密过程(终端运行)

>>> (c ** d)%n
87 # 明文

三、RSA加密算法中求乘法逆元

1、乘法逆元定理

由于除法无法直接求模,转化为乘法再求模。

例如:

  • 普通除法下: 14 / 4 = 7 / 2 = 7 x 1/2 = ,将除法转化为乘法。

  • 在该式子下再取模就是模的除法:(14 / 4)mod 5 = (7 x 1/2) mod 5 =() mod 5

  • 乘法逆元类似与倒数的概念,两数相乘1,() mod 5 中取模的数一定为整数,所以1/2需要被整数替换。

  • 因为(2 * 3) mod 5 =1, 则2对与mod 5的乘法逆元为3。可以用3替换1/2

  • () mod 5 = (7 x 3) mod 5 =21 mod 5 = 1。理解为,7乘以“2的乘法逆元”模5。

乘法逆元定义:设aZ, nN, 如果az 1 (mod n) ,称z是模n下a的乘法逆元,记作

其中: a的乘法逆元是,z的乘法逆元

注意1:模n下互为乘法逆元,一般只考虑比n小的数。

注意2:a在模n内的乘法逆元)是唯一的。也可能就是本身。

注意3:乘法逆元存在条件:gcd(a,n) = 1(最大公约数) ,即模n下,a有乘法逆元。也就是说a 和n互质。

2、用扩展欧几里得算法求乘法逆元

(1)扩展欧几里得算法

给出正整数a和b,扩展的欧几里得算法可以计算a和b的最大公约数d,同时得到两个符号相反的整数x和y满足:d=gcd(a, b) = ax+by。

(2)根据扩展欧几里得算法求乘法逆元

az 1 (mod n) 求模的乘法逆元,又可以写成(a * z)mod n = 1,其中a和n互为质数,gcd(a,n)=1。

(可以得到a * z= y * n +1,这里的y是求解(a * z)mod n = 1中的系数。例如:(7 * 8)mod 11 =1,计算过程,7 * 8 = 5 * 11 + 1,这里的y是5。)

根据扩展欧几里得算法,即得到ax + by = gcd(a, b) = 1。整个求解的过程就是使用欧几里得算法gcd(a,b) = gcd(b, a mod b),求两个数的公约数,一直计算到1为止即可。例如:

  • a = 5,b = 14

14 % 5 =14 - 5 * 2 = 4

5 % 4 = 5 - 4 * 1 = 1 = gcd(a,b)

往回推算:4 = 14 - 5 * 2 替换

5 - (14 - 5* 2) = 1

5 - 14* 1+ 5* 2 =1

5*3 - 14*1 =1

此时x=3,y =1。但是y不是所求的。

则3 是 5 mod 14 的逆元。

  • 当由于式子是奇数个,所以最后整理时a的系数为负:

a =5, b = 18

18 % 5 = 18 - 5 * 3 = 3

5 % 3 = 5 - 3*1 = 2

3 % 2 = 3 - 2 * 1 =1

倒回去:

3-(5 - 3 * 1)=1

18 - 5 * 3 -(5 - 18 + 5 * 3)= 18 - 5 * 3 -5 * 4 + 18 = 18 * 2 - 5 * 7=1

转化为5*(-7)+ 18 * 2 = 1

利用两个数互质的性质以及最小公倍数,我们可以直接得到想要的结果:

5*(-7)+ 18 * 2 = 5 * (-7) mod 18 = 5 * (18-7)mod 18 = 5 * 11 mod 18 =1

最终x= 11.

(欧几里得算法求逆元的代码实现暂时略)

这篇关于Python数据结构与算法-RAS算法(p96)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/179481

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费