如何运用R语言在生物群落生态学中的数据统计分析

2023-10-10 08:20

本文主要是介绍如何运用R语言在生物群落生态学中的数据统计分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

R 语言作的开源、自由、免费等特点使其广泛应用于生物群落数据统计分析。生物群落数据多样而复杂,涉及众多统计分析方法。本次以生物群落数据分析中的最常用的统计方法回归和混合效应模型、多元统计分析技术及结构方程等数量分析方法为主线,通过多个来自经典研究中的实例,详细讲述各方法的R语言实现途径。主要特点为聚焦群落生态学研究领域,从R语言基础操作和作图、数据准备整理,到各种数量分析方法的应用情景分析,实现从数据整理到分析结果表达的完整的科学研究数据分析及结果展示的全过程

阅读全文点击《如何运用R语言在生物群落生态学中的数据统计分析》

专题一:统一基础:R入门及Rstudio

1) R及Rstudio介绍:背景、软件及程序包安装、基本设置等

2) R语言基本操作,包括向量、矩阵、数据框及数据列表等生成和数据提取等

3) R语言数据文件读取、整理(清洗)、结果存储等(含tidverse)

4) R语言基础绘图(含ggplot):基本绘图、排版、发表质量绘图输出存储

​专题二:群落数据准备及探索分析

1) 生物群落数据准备:物种组成、环境变量、物种功能属性、系统发育树等

2) 生物群落数据检查:缺失值和离群值(outliers)等-避免模型错进错出(GIGO)

3) 物种多样性计算:物种多样性(TD)、功能多样性(FD)和系统发育多样性(PD)

4) 物种相似/相异矩阵关联测度介绍

专题三:群落数据分组分析: 等级/非等级聚类(HC/NHC)、PERMANOVA、MRPP

1) 生物群落数据的聚类及差异分析

2) 案例1鸟类生境数据的等级和非等级聚类:KMEANS和HCLUST

3) 案例2乌龟适宜生境差异检验(2组比较)及解释:PERMANOVA、MRPP、ANOSIM及Dispersion test

4) 案例3环境梯度下微生物组成差异分析(多组比较)及解释:MRPP及Dispersion Test

专题四:群落数据排序上:非约束排序-PCA、CA、PCoA、NMDS

1)生物群落数据非约束排序分析

2)案例1鱼类生境数据排序:PCA

3)案例2鸟类物种组成数据的排序:CA、PCoA和NMDS比较

4)案例3 药物对肠道微生物群落影响:PCoA+PERMANOVA+ggplot

专题五:群落数据排序下:约束排序-RDA、dbRDA、CCA、第四角分析(4th Corner)

1) 生物群落数据约束排序:非对称约束排序VS对称约束排序

2) 案例1景观、斑块及生境因子蛾类群落分布的解释:RDA、dbRDA或CCA选择+变差分解

3) 案例2物种有无(0,1)数据约束排序:dbRDA

4) 案例3物种组成、物种属性及环境因子的相关分析-第四角分析(4th Corner)

专题六:一般线性模型(lm)与广义线性模型(glm)-正态与非正态数据分析

1) 一般线性模型与广义线性模型原理及比较

2) 案例1不同鱼类游速的回归、方差及协方差分析(lm)

3) 案例2有无(0,1)数据的逻辑斯蒂模型-二项分布(glm)

4) 案例3物种多度分布环境解释-计数数据泊松、负二项、零膨胀、零截断模型(glm)

专题七:线性混合效应模型(lmm)与广义线性混合效应模型(glmm)-数据分层与嵌套分析

1) 混合效应的原理及分析流程与案例解析

2) 案例1分层数据物种多样性决定因素:线性混合效应模型(lmm)

3) 案例2蝌蚪“变态”与否(0,1)的多因素分析:广义线性混合效应模型(glmm)

4) 计数数据广义线性混合效应模型(glmm)

专题八:空间、时间及系统发育相关回归-数据自相关(autocorrelation)问题分析

1) 数据自相关问题:时间、空间和系统发育相关讲解

2) 案例1森林植物多样性分布格局的空间自相关修正

3) 案例2不同年份鸟类多度的时间自相关修正

4) 案例3系统发育相关在虾类多度分布分析中作用

专题九:结构方程模型(SEM):lavaan和piecewiseSEM-多变量直接和间接效应及因果关系

1)结构方程模型:定义、应用、估计方法、模型可识别规则及样本量要求等

2)案例1群落物种丰富度恢复的直接及间接效应(direct and indirect effects):SEM分析基本流程-lavaan vs piecwiseSEM

3)案例2环境异质性和资源可获得性对不同演替阶段林下维管植物多样性的影响:模型调整、比较、评估及结果展示

4)案例3人类活动、环境条件、物种属性对动物领域大小相对贡献(relative roles):分层数据、混合模型、分组分析及分类变量SEM实现

专题十:群落数据及统计分析结果作图(ggplot)排版及发表质量图输出

1) 群落数据及统计分析结果作图数据准备:结果提取、整理

2) PCA、CA、PCoA及NMDS等非约束排序图:排序图和双序图(biplot)

3) RDA、db-RDA及CCA等约束排序图:三序图(triplot)和韦恩图(venn)

4) 回归和混合效应模型分析结果图:散点图、箱线图、柱状图及提琴图等

5) 结构方程模型结果图表达方式

这篇关于如何运用R语言在生物群落生态学中的数据统计分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/179224

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X