Python爬取近十年TIOBE编程语言热度数据并可视化!

本文主要是介绍Python爬取近十年TIOBE编程语言热度数据并可视化!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文介绍如何利用requests+正则表达式爬取TIOBE编程语言热度数据,并使用openpyxl写入数据与pyecharts时间轮播图进行可视化。

一、数据获取

我们需要爬取的目标url为https://www.tiobe.com/tiobe-index/打开之后如下

分析网页源代码可以找到想要的数据,利用正则表达式提取出想要的数据,并保存到Excel中,便于后续数据处理和可视化。

完整爬虫代码如下,其中大多数语句都给出了详细注释,感兴趣的读者可以进一步研究。

# -*- coding: UTF-8 -*- 
""" 
@File    :spider.py 
@Author  :叶庭云 
@CSDN    :https://yetingyun.blog.csdn.net/ 
""" 
import requests 
import re 
import openpyxl 
import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s: %(message)s') 
headers = { "User-Agent": "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.89 Safari/537.1" 
} wb = openpyxl.Workbook()    # 创建工作簿对象 
sheet = wb.active           # 获取活动的工作表 
# 编程语言   时间    热度 
sheet.append(['Programing', 'Date', 'data_per']) url = 'https://www.tiobe.com/tiobe-index/' 
rep = requests.get(url, headers=headers).text # 正则匹配提取数据 
data = re.findall('{name : (.*?),data : (.*?)}', rep) 
programing = [eval(k[0]) for k in data]     # 编程语言 
dates = [i[1] for i in data] # 正则表达式处理 提取出想要的数据 
for x in range(len(dates)): name = programing[x] datas = re.findall(r'\[Date.UTC(.*?)\]', dates[x], re.DOTALL) for m in datas: date1 = re.findall(r'\d+', m)       # 正则提取出数字 date2 = '-'.join(date1[:3])         # 拼接得到时间 data_per = '.'.join(date1[-2:])     # 得到热度数据 sheet.append([name, date2, data_per]) logging.info([name, date2, data_per]) wb.save('language_data.xlsx') 

最终运行效果如下:

可以看到成功提取出想要的数据,并保存到Excel,在jupyter notebook 环境中查看数据:

二、 数据可视化

本节使用pyecharts绘制时间轮播图数据可视化,展示现在热度排 Top10 的编程语言 2009-2019 年每年的平均热度变化。

# -*- coding: UTF-8 -*- 
""" 
@File    :轮播图.py 
@Author  :叶庭云 
@CSDN    :https://yetingyun.blog.csdn.net/ 
""" import pandas as pd 
import xlrd 
import pyecharts.options as opts 
from pyecharts.charts import Timeline, Bar 
from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = 'D:/python/pyecharts-assets-master/assets/' # 提取编程语言名字 
name = list(pd.read_excel('language_data.xlsx')['Programing'].drop_duplicates()) data = xlrd.open_workbook('language_data.xlsx') 
table = data.sheets()[0] dic1 = {k: [] for k in name} 
# 各编程语言对应每年里不同时间的热度 
for i in range(1, table.nrows): x = table.row_values(i) dic1[x[0]].append((x[1], x[2])) # 与编程语言顺序对应  每年编程语言对应的不同时间的热度 
data_per = {k: [[] for x in range(10)] for k in range(2001, 2021)} 
print(data_per) count = 0 
for k, v in dic1.items(): for j in v:   # v (时间,热度)  热度数据添加进各年对应的列表里 data_per[int(j[0][:4])][count].append(eval(j[1]))  # 一年里各编程语言不同时间时的热度  对应起来 count += 1 # print(data_per) 
data_per1 = {k: [] for k in list(data_per.keys())} for k, v in list(data_per.items()): for x in v: if len(x) == 0:                  # 这一年里该语言没有热度数据 data_per1[k].append(0) else: avg = sum(x) / len(x) data_per1[k].append(avg)     # 这一年里的平均热度 # 得到TOBIE现在排Top20的编程语言从2001年开始每年的平均热度 
print(data_per1) def get_year_overlap_chart(year) -> Bar: sum_info = [(m, n) for m, n in zip(name, data_per1[year])] # 编程语言按每年平均热度排序 sum_info.sort(key=lambda z: z[1], reverse=True) name_ = [m[0] for m in sum_info] datas = [m[1] for m in sum_info] # 每根柱子的颜色列表 colors = ['#00BFFF', '#0000CD', '#000000', '#008000', '#FF1493', '#FFD700', '#FF4500', '#00FA9A', '#191970', '#9932CC'] x = [] for i in range(10): x.append( opts.BarItem( name=name_[i], value=datas[i], itemstyle_opts=opts.ItemStyleOpts(color=colors[i])   # 设置每根柱子的颜色 ) ) # 绘制柱形图 bar = Bar() bar.add_xaxis(name_) bar.add_yaxis(series_name='热度', yaxis_data=x, is_selected=True, label_opts=opts.LabelOpts(is_show=False)) bar.set_global_opts(title_opts=opts.TitleOpts( title="2009-2019编程语言热度"), tooltip_opts=opts.TooltipOpts( is_show=True, trigger="axis", axis_pointer_type="shadow"), xaxis_opts=opts.AxisOpts(name='编程语言'), yaxis_opts=opts.AxisOpts(name='热度'), ) return bar # 生成时间轴的图 
timeline = Timeline(init_opts=opts.InitOpts(width="1200px", height="600px")) 
for y in range(2009, 2020): timeline.add(get_year_overlap_chart(y), time_point=str(y)) timeline.add_schema(is_auto_play=True, play_interval=1000) 
timeline.render("language_2009_2019.html") 

运行效果如下,可以看到虽然Python越来越火热,但Java稳坐编程语言热度排行榜第一!(此处一位PHP程序员拍桌)

三、补充

本节对有时候pyecharts绘制的图形渲染在网页上无法加载js文件的问题进行说明。

根据网站资源引用说明:pyecharts 使用的所有静态资源文件存放于pyecharts-assets项目中

默认挂载在 https://assets.pyecharts.org/assets/,因为默认优先从远程引用资源,这就导致有的时候无法加载 js 文件,图表显示不出来。

解决办法:下载所需 js 文件到本地,修改资源引用地址,Github地址:https://github.com/pyecharts/pyecharts-assets看网站的介绍,pyecharts 提供了更改全局 HOST 的快捷方式。

from pyecharts.globals import CurrentConfig CurrentConfig.ONLINE_HOST = 'D:/python/pyecharts-assets-master/assets/' # 本地保存 js 资源的路径 

PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取

python免费学习资料以及群交流解答点击即可加入

 

这篇关于Python爬取近十年TIOBE编程语言热度数据并可视化!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/176809

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核