深度学习基础知识 nn.Sequential | nn.ModuleList | nn.ModuleDict

2023-10-09 18:15

本文主要是介绍深度学习基础知识 nn.Sequential | nn.ModuleList | nn.ModuleDict,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习基础知识 nn.Sequential | nn.ModuleList | nn.ModuleDict

  • 1、nn.Sequential 、 nn.ModuleList 、 nn.ModuleDict 类都继承自 Module 类。
  • 2、nn.Sequential、nn.ModuleList 和 nn.ModuleDict语法
  • 3、Sequential 、ModuleDict、 ModuleList 的区别
  • 4、ModuleDict、 ModuleList 的区别
  • 5、nn.ModuleList 、 nn.ModuleDict 与 Python list、Dict 的区别

1、nn.Sequential 、 nn.ModuleList 、 nn.ModuleDict 类都继承自 Module 类。

2、nn.Sequential、nn.ModuleList 和 nn.ModuleDict语法

net = nn.Sequential(nn.Linear(32, 64), nn.ReLU()) →→只需要将定义的层按照顺序写入括号内就可以了

net = nn.ModuleList([nn.Linear(32, 6)4, nn.ReLU()]) →→在定义式需要加上中括号[],将定义的层写入到中括号内

net = nn.ModuleDict({‘linear’: nn.Linear(32, 64), ‘act’: nn.ReLU()}) →→需要大括号,将定义的层以键值对的形式写入

代码

import torch
import torch.nn as nnnet1 = nn.Sequential(nn.Linear(32, 64), nn.ReLU())
net2 = nn.ModuleList([nn.Linear(32, 64), nn.ReLU()])
net3 = nn.ModuleDict({'linear': nn.Linear(32, 64), 'act': nn.ReLU()})print(net1)
print(net2)
print(net3)

在这里插入图片描述

3、Sequential 、ModuleDict、 ModuleList 的区别

1、 ModuleList 仅仅是一个储存各种模块的列表,这些模块之间没有联系也没有顺序(所以不用保证相邻层的输入输出维度匹配),而且没有实现 forward 功能需要自己实现

2、和 ModuleList 一样, ModuleDict 实例仅仅是存放了一些模块的字典,并没有定义 forward 函数需要自己定义

3、而 Sequential 内的模块需要按照顺序排列,要保证相邻层的输入输出大小相匹配,内部 forward 功能已经实现,所以,直接如下写模型,是可以直接调用的,不再需要写forward,sequential 内部已经有 forward

代码:

import torch
import torch.nn as nnnet1 = nn.Sequential(nn.Linear(32, 64), nn.ReLU())
net2 = nn.ModuleList([nn.Linear(32, 64), nn.ReLU()])
net3 = nn.ModuleDict({'linear': nn.Linear(32, 64), 'act': nn.ReLU()})x = torch.randn(8, 3, 32)
print(net1(x).shape)    # 输出内容: torch.Size([8, 3, 64])
# print(net2(x).shape)  # 会报错,提示缺少forward
# print(net3(x).shape)   # 会报错,提示缺少forward

为 nn.ModuleList 写 forward 函数
代码:

import torch
import torch.nn as nnclass My_Model(nn.Module):def __init__(self):super(My_Model, self).__init__()self.layers = nn.ModuleList([nn.Linear(32, 64),nn.ReLU()])def forward(self, x):for layer in self.layers:x = layer(x)return xnet = My_Model()x = torch.randn(8, 3, 32)
out = net(x)
print(out.shape)

输出结果:
在这里插入图片描述
为 nn.ModuleDict 写 forward 函数

import torch
import torch.nn as nnclass My_Model(nn.Module):def __init__(self):super(My_Model, self).__init__()self.layers = nn.ModuleDict({'linear': nn.Linear(32, 64), 'act': nn.ReLU()})def forward(self, x):for layer in self.layers.values():x = layer(x)return xnet = My_Model()
x = torch.randn(8, 3, 32)
out = net(x)
print(out.shape)

将 nn.ModuleList 转换成 nn.Sequential

import torch
import torch.nn as nnmodule_list = nn.ModuleList([nn.Linear(32, 64), nn.ReLU()])
net = nn.Sequential(*module_list)
x = torch.randn(8, 3, 32)
print(net(x).shape)

输出如下:
在这里插入图片描述

将 nn.ModuleDict 转换成 nn.Sequential

import torch
import torch.nn as nnmodule_dict = nn.ModuleDict({'linear': nn.Linear(32, 64), 'act': nn.ReLU()})
net = nn.Sequential(*module_dict.values())
x = torch.randn(8, 3, 32)
print(net(x).shape)

输出如下:
在这里插入图片描述

4、ModuleDict、 ModuleList 的区别

1、ModuleDict 可以给每个层定义名字,ModuleList 不会
2、ModuleList 可以通过索引读取,并且使用 append 添加元素

import torch.nn as nnnet = nn.ModuleList([nn.Linear(32, 64), nn.ReLU()])
net.append(nn.Linear(64, 10))
print(net)

3、ModuleDict 可以通过 key 读取,并且可以像 字典一样添加元素

import torch.nn as nnnet = nn.ModuleDict({'linear1': nn.Linear(32, 64), 'act': nn.ReLU()})
net['linear2'] = nn.Linear(64, 128)
print(net)

5、nn.ModuleList 、 nn.ModuleDict 与 Python list、Dict 的区别

import torch.nn as nnnet = nn.ModuleList([nn.Linear(32, 64), nn.ReLU()])for name, param in net.named_parameters():print(name, param)print("-----------------------------")
for name, param in net.named_parameters():print(name, param.size())

显示结果如下:
在这里插入图片描述

import torch.nn as nnnet = nn.ModuleDict({'linear': nn.Linear(32, 64), 'act': nn.ReLU()})for name, param in net.named_parameters():print(name, param.size())
print("--------------------------")for name, param in net.named_parameters():print(name, param.size())

显示结果:
在这里插入图片描述

这篇关于深度学习基础知识 nn.Sequential | nn.ModuleList | nn.ModuleDict的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/174664

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实