『ACM C++』HDU杭电OJ | 1418 - 抱歉 (拓扑学:多面体欧拉定理引申)

2023-10-09 15:59

本文主要是介绍『ACM C++』HDU杭电OJ | 1418 - 抱歉 (拓扑学:多面体欧拉定理引申),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  呕,大一下学期的第一周结束啦,一周过的挺快也挺多出乎意料的事情的~ 随之而来各种各样的任务也来了,嘛毕竟是大学嘛,有点上进心的人多多少少都会接到不少任务的,忙也正常啦~端正心态 开心面对就好啦~

  今天突然回顾了一下《从你的全世界路过》这本书和电影,莫名的感悟涌上心头,收集到了一些走入人心的一些语句:

  1、在季节的车上,如果你要提前下车,请别推醒装睡的我,这样我可以沉睡到终点,假装不知道你已经离开。

  2、世事如书,我偏爱你这一句,愿做个逗号,待在你脚边。但你有自己的朗读者,而我只是个摆渡人。

  3、我淋过的最大的雨,是那一天你在烈日下的不回头。

  4、这世界是你的遗嘱,而我是你唯一的遗物。

  5、我希望有个如你一般的人,如山间清爽的风,如古城温暖的光,从清晨到夜晚,由山野到书房,只要最后是你,就好。

 

 

今日兴趣新闻:

MWC 2019 新品汇总:5G+ 折叠屏开启的新时代?

链接:https://mbd.baidu.com/newspage/data/landingsuper?context=%7B"nid"%3A"news_11274128788158220226"%7D&n_type=0&p_from=1

 

 

------------------------------------------------题目----------------------------------------------------------

抱歉

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6147    Accepted Submission(s): 2891

Problem Description

非常抱歉,本来兴冲冲地搞一场练习赛,由于我准备不足,出现很多数据的错误,现在这里换一个简单的题目:
前几天在网上查找ACM资料的时候,看到一个中学的奥数题目,就是不相交的曲线段分割平面的问题,我已经发到论坛,并且lxj 已经得到一个结论,这里就不
多讲了,下面有一个类似的并且更简单的问题:

如果平面上有n个点,并且每个点至少有2条曲线段和它相连,就是说,每条曲线都是封闭的,同时,我们规定:
1)所有的曲线段都不相交;
2)但是任意两点之间可以有多条曲线段。
如果我们知道这些线段把平面分割成了m份,你能知道一共有多少条曲线段吗?

Input

输入数据包含n和m,n=0,m=0表示输入的结束,不做处理。
所有输入数据都在32位整数范围内。

Output

输出对应的线段数目。

Sample Input

3 2
0 0

Sample Output

 3
------------------------------------------------ 题目----------------------------------------------------------

(一) 题目分析:

     题目一上来懵了,很短的题目,也很容易读懂什么意思,但就是没有思路下手,对数学背景也不太清楚,还是一道中学奥数题,AC率还很高,我居然还不会做,去看了一下杭电的discuss之后才发现,这其实就是多面体欧拉定理的输出结果而已。

    后面会引申多面体欧拉定理。

 

(二)AC代码:

#include<stdio.h>
using namespace std; 
long long int n,m;
int main() 
{while(scanf("%d%d",&n,&m) && (n||m))printf("%d\n",n+m-2); return 0; 
}

  注:因为代码太简单就不分块了,主要是引出多面体欧拉定理。

 

(三)AC截图:

 

(四)解后分析:

    多面体欧拉定理:

      多面体欧拉定理是指对于简单多面体,其顶点数V、棱数E及面数F间有著名的欧拉公式:V-E+F=2。简单多面体即表面经过连续变形可以变为球面的多面体。

      V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。 如果P可以同胚于一个球面(可以通俗地理解为能吹胀成一个球面),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。 X(P)叫做P的拓扑不变量,是拓扑学研究的范围。

      引申其他的欧拉公式

    分式里的欧拉公式

      a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)

      当r=0,1时式子的值为0 当r=2时值为1

      当r=3时值为a+b+c

    复变函数论里的欧拉公式:

      e^ix=cosx+isinx

      e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.

      将公式里的x换成-x,得到:

      e^-ix=cosx-isinx,然后采用两式相加减的方法得到:

      sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作∏就得到:

      e^i∏+1=0. 这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。

    三角形中的欧拉公式

      设r为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则: d^2=r^2-2rr

    拓扑学里的欧拉公式:(多面体欧拉公式)

      v+f-e=x(p),v是多面体p的顶点个数,f是多面体p的面数,e是多面体p的棱的条数,x(p)是多面体p的欧拉示性数。

      如果p可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么x(p)=2,如果p同胚于一个接有h个环柄的球面,那么x(p)=2-2h。

      x(p)叫做p的欧拉示性数,是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。

      在多面体中的运用:

      简单多面体的顶点数v、面数f及棱数e间有关系

      v+f-e=2

      这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。

    初等数论里的欧拉公式:

      欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。

      欧拉证明了下面这个式子:

      如果n的标准素因子分解式是p1^a1*p2^a2*……*pm^am,其中众pj(j=1,2,……,m)都是素数,而且两两不等。则有

      φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm)

      利用容斥原理可以证明它。

      

      参考:https://www.phb123.com/shijiezhizui/renlei/20095_2.html

 

注:我还是个渣渣辉,代码可能写得不够高效不够好,我也会努力优化,如果有更好的解法,真心希望您能够评论留言贴上您的代码呢~互相帮助互相鼓励才能成长鸭~~

转载于:https://www.cnblogs.com/winniy/p/10459075.html

这篇关于『ACM C++』HDU杭电OJ | 1418 - 抱歉 (拓扑学:多面体欧拉定理引申)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/173953

相关文章

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

C++包装器

包装器 在 C++ 中,“包装器”通常指的是一种设计模式或编程技巧,用于封装其他代码或对象,使其更易于使用、管理或扩展。包装器的概念在编程中非常普遍,可以用于函数、类、库等多个方面。下面是几个常见的 “包装器” 类型: 1. 函数包装器 函数包装器用于封装一个或多个函数,使其接口更统一或更便于调用。例如,std::function 是一个通用的函数包装器,它可以存储任意可调用对象(函数、函数

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

06 C++Lambda表达式

lambda表达式的定义 没有显式模版形参的lambda表达式 [捕获] 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 有显式模版形参的lambda表达式 [捕获] <模版形参> 模版约束 前属性 (形参列表) 说明符 异常 后属性 尾随类型 约束 {函数体} 含义 捕获:包含零个或者多个捕获符的逗号分隔列表 模板形参:用于泛型lambda提供个模板形参的名

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2093 考试排名(sscanf)

模拟题。 直接从教程里拉解析。 因为表格里的数据格式不统一。有时候有"()",有时候又没有。而它也不会给我们提示。 这种情况下,就只能它它们统一看作字符串来处理了。现在就请出我们的主角sscanf()! sscanf 语法: #include int sscanf( const char *buffer, const char *format, ... ); 函数sscanf()和

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s