Denoising Score Matching (DSM) 去噪得分匹配模型

2023-10-09 12:44

本文主要是介绍Denoising Score Matching (DSM) 去噪得分匹配模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有没有谁通俗的讲一下Denoising score matching?

Denoising Score Matching (DSM)
论文 << A Connection Between Score Matching and Denoising Autoencoders>>

作者是将denoising autoencoder和score mathching 联系在了一起,提出了 Denoising Score Matchine (DSM), 并且这个工作启发了后来的很多工作。

简单的说这个工作和score matching的区别是, score matching 中拟合的是原始数据的log 梯度,而 DSM中拟合的是加了噪声的数据的log 梯度, 从加噪声这点来看,和denoising autoencoder的做法很相似的。

这里我觉得这里重点是他为什么要在数据里加噪声,这里一个motivation 是和denoising autoencoder 里提的差不多,第二个是说原始score matching 里面如果数据不多的话,梯度估计的不准,那你后期在采样的时候,可能样本的质量就不太高,在数据上做点扰动,可以起到一定数据增广的效果,再一个这个噪声是你加的,你可以控制这个噪声的力度,也就是说你可以通过加噪声来控制生成的新数据和原数据的相似程度,这一点我觉得和DDPM里面的思想有些相似, 再一个我觉得很奇妙的是作者通过添加高斯噪声最后推导出一个新的公式,这个新的公式比原来的score matching的要好,后面会说明。

得分匹配 Score Matching

最近,以宋博士为代表的研究者提出基于得分的概率生成模型在图像生成等领域取得佳绩,打破了一些主流生成模型(如,对抗生成模型-GAN,变分自编码器 -VAE,基于流的生成模型-Flow-based Genarative Model等)在生成领域的制霸权,引领了一波生成模型的研究热潮 (详情请参考宋博士博客Generative Modeling by Estimating Gradients of the Data Distribution)。

基于得分的概率生成模型最主要的思想是估计得分,而估计得分的主流方法得分匹配 (Score Matching) 早在2005年已经有研究者提出。因此,了解得分匹配的原理能够帮助理解和学习主流的生成模型。

这篇关于Denoising Score Matching (DSM) 去噪得分匹配模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/172930

相关文章

Nginx location匹配模式与规则详解

《Nginxlocation匹配模式与规则详解》:本文主要介绍Nginxlocation匹配模式与规则,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、环境二、匹配模式1. 精准模式2. 前缀模式(不继续匹配正则)3. 前缀模式(继续匹配正则)4. 正则模式(大

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

Python中使用正则表达式精准匹配IP地址的案例

《Python中使用正则表达式精准匹配IP地址的案例》Python的正则表达式(re模块)是完成这个任务的利器,但你知道怎么写才能准确匹配各种合法的IP地址吗,今天我们就来详细探讨这个问题,感兴趣的朋... 目录为什么需要IP正则表达式?IP地址的基本结构基础正则表达式写法精确匹配0-255的数字验证IP地

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

详解nginx 中location和 proxy_pass的匹配规则

《详解nginx中location和proxy_pass的匹配规则》location是Nginx中用来匹配客户端请求URI的指令,决定如何处理特定路径的请求,它定义了请求的路由规则,后续的配置(如... 目录location 的作用语法示例:location /www.chinasem.cntestproxy

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Nginx中location实现多条件匹配的方法详解

《Nginx中location实现多条件匹配的方法详解》在Nginx中,location指令用于匹配请求的URI,虽然location本身是基于单一匹配规则的,但可以通过多种方式实现多个条件的匹配逻辑... 目录1. 概述2. 实现多条件匹配的方式2.1 使用多个 location 块2.2 使用正则表达式

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo