量子位 评奖_什么是量子位?

2023-10-09 10:30
文章标签 量子 评奖

本文主要是介绍量子位 评奖_什么是量子位?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

量子位 评奖

Welcome to Introduction to Quantum Computing. I am your guide, Associate Professor Chris Ferrie, a researcher in the UTS Centre for Quantum Software and Information. This is Lecture 2. It would probably be a good idea to have read the previous Lectures before continuing.

欢迎来到《量子计算入门》。 我是您的指南, UTS量子软件和信息中心的研究员Chris Ferrie副教授 。 这是第二讲 。 在继续之前先阅读以前的讲座可能是一个好主意。

What did you learn last week?Last week you reviewed the necessary maths to get started on quantum computing. You also had a high-level introduction to the field. Most importantly, you had your first taste of quantum programming by creating “hello quantum world” in several quantum programming languages.What will you learn this week?This week you will meet the qubit — the basic unit of quantum information. You will perform computations using Dirac notation, the secret weapon of the quantum ninja. By applying gates and measurements to your qubit, you will know how to perform a single qubit quantum computation.What will you be able to do at the end of this week 2?At the end of this module, you should be able to answer these questions:What is quantum information and how is it represented?
What is a quantum state?
How are quantum logic operations represented?
What is a quantum circuit and how is it analysed?
How do you “read” quantum information?

信息不是物理的 (Information is not physical)

演示地址

Information is an overloaded word with many meanings depending on context. Here we will take a computational view. An abstract model of a computation looks like this: Input → Compute → Output. The input is one from a finite set of possibilities. We can always uniquely identify which it is with bits, answers to yes/no questions. A sequence of n bits can represent 2ⁿ different possibilities. So, no matter what the input to a computation is, we can always think about it in terms of bits without losing anything. The same goes for the output. There are many concrete representations of bits, the most common being sequences of 0’s and 1’s.

信息是一个重载的单词,具有取决于上下文的多种含义。 在这里,我们将进行计算。 计算的抽象模型如下所示:输入→计算→输出。 输入来自一组有限的可能性。 我们始终可以用位唯一地标识它是什么,回答是/否的问题。 n位序列可以表示2种不同的可能性。 因此,无论计算的输入是什么,我们始终可以按位考虑它,而不会丢失任何内容。 输出也是如此。 有很多具体的位表示形式,最常见的是0和1的序列。

Image for post

We can phrase computational questions within this model. For example, we can ask what sorts of operations preserve bits. This would tell us all the “allowed” computations that turn sequences of input bits into output bits. But we might also ask which, if any, algorithms can be implemented efficiently. If every algorithm required a number of steps that grew exponentially as the input size grew, computer science would be a non-starter. But even if there were algorithms that can be implemented efficiently (there are of course), it would probably still be the case that performing the computation by hand would be impractical. No one wants to add two 1 million digit numbers, even if “addition” is efficient. So we might then ask if a physical machine can be built to perform very large computations for us. And indeed they can — that’s digital electronics.

我们可以在此模型中表达计算问题。 例如,我们可以询问哪种操作保留位。 这将告诉我们所有将输入位序列转换为输出位的“允许”计算。 但我们也可能会问,哪些算法(如果有)可以有效实施 如果每种算法都需要随着输入大小的增长而呈指数增长的许多步骤,那么计算机科学将是一个起步。 但是,即使有可以有效实施的算法(当然也有), 手动执行计算仍然是不切实际的情况。 即使“加法”是有效的,也没有人愿意添加两个一百万个数字。 因此,我们可能会问是否可以构建一台物理机器来为我们执行非常大的计算。 而且确实可以,那就是数字电子产品。

Now let’s ask a similar set of questions, but not of bits. Let’s imagine an abstract model of computation where the inputs are sequences of complex vectors. Let’s take the simplest non-trivial case of 2-dimensional vectors.

现在,让我们问类似的问题集,而不是问题。 让我们想象一个抽象的计算模型,其中输入是复数向量的序列。 让我们以二维向量的最简单的平凡情况为例。

Image for post

The notation |𝜓⟩ anticipates qubits, but for now they are just abstract vectors, like our abstract bits from before. So we ask first, what sorts of operations preserve these vectors — that is, take input vectors and produce output vectors. Let’s constrain the search to those things that are linear and preserve the length of the vector as well. Now we ask if any of these operations can be implemented efficiently in the sense that the number of elementary steps doesn’t grow exponentially as the number of input vectors increases. Of course we can create our own efficient algorithms by design (they might not do anything interesting, but we can make them). Even then, though, the fact remains that as the input size increases, our capacity to calculate things “by hand” becomes limited. In this case, those same digital machines could do the computation for us, but it turns out that they cannot do so efficiently. So, the question becomes, can a physical machine be built to perform the computation for us efficiently?

| 𝜓⟩符号表示可以预见的量子位,但目前它们只是抽象矢量,就像我们以前的抽象位一样。 因此,我们首先要问,哪些类型的操作会保留这些向量-即,采用输入向量并产生输出向量。 让我们将搜索限制在那些线性的东西上,并保留向量的长度。 现在,我们要问这些操作中的任何一个是否可以有效地实现,即基本步数不会随着输入向量数量的增加而呈指数增长。 当然,我们可以通过设计来创建自己的高效算法(它们可能没有做任何有趣的事情,但是我们可以使它们成为现实)。 即使这样,事实仍然是,随着输入大小的增加,我们“手动”计算事物的能力受到限制。 在这种情况下,那些相同的数字机器可以为我们做计算,但是事实证明它们不能高效地做。 因此,问题就变成了,可以建造一台物理机器来为我们高效地执行计算吗?

And, indeed, it seems the answer is yes! That machine would be a quantum computer. The 2-dimensional vectors can be physically represented by quantum mechanical systems, such as atomic energy levels, spin, polarisation, and many more. But that is in some sense beside the point. The point is, whereas we think of bits as “information”, this new model of computation with vectors has a new type of computational information. Since it can be represented with 2-dimensional quantum systems, we call them “quantum bits”, or qubits.

而且,的确,答案似乎是肯定的! 那台机器将是一台量子计算机。 二维向量可以用量子力学系统来物理表示,例如原子能级,自旋,极化等。 但这在某种意义上是不重要的。 关键是,尽管我们将位视为“信息”,但是这种带有向量的新计算模型具有一种新型的计算信息。 因为它可与2维量子系统来表示,我们称之为“量子位”,或量子位

Wow. That was a long way to go just to get to qubits, which I’m sure you’ve already heard of. The reason I want you to think about this perspective is that it avoids the usual unnecessary attachment of qubits to physical things, which very quickly leads to confusion since we cannot really think concretely about “quantum things” having definite and objective properties. In any case, if you have been following, “quantum information” is specified in qubits — 2-dimensional complex vectors with unit norm.

哇。 仅仅为了获得量子比特,还有很长的路要走,我相信您已经听说过。 我想让您考虑这种观点的原因是,它避免了量子位通常与物理事物的不必要连接,这很快就会导致混乱,因为我们无法真正具体地考虑具有确定性和客观属性的“量子事物”。 无论如何,如果您一直在遵循,则在量子位(具有单位范数的二维复数向量)中指定“量子信息”。

Next time you hear bits are 0 or 1 and qubits are 0 and 1 at the same, think about how illogical that statement is and how utterly useless it will be if you tried to use it in your task to program a quantum computer.

下次当您听到比特是0或1,而量子比特是0 1时 ,请考虑一下该语句多么不合逻辑,以及如果您尝试在任务中使用它来对量子计算机进行编程,那么它将完全无用。

Bits are variables that can take one of two values. The state of bit is what particular value it has. Similarly qubits are 2-dimensional complex vectors with unit norm. The state of a qubit is the particular vector value the qubit has. Sometimes we are sloppy with the language and use these things interchangeably. Sorry about that..

位是可以采用两个值之一的变量。 位的状态是它具有的特定值。 类似地,量子位是具有单位范数的二维复数向量。 量子位的状态是该量子位具有的特定矢量值。 有时我们对语言草率,并且可以交替使用这些东西。 对于那个很抱歉..

狄拉克的遗产:请真正的量子比特站起来吗 (Dirac’s legacy: would the real quantum bits please stand up)

演示地址

When you ask a quantum information theorist what powers quantum computation you’ll get a myriad of answers — superposition, parallelism, entanglement, coherence, yadda yadda yadda. I will say, what power quantum computation — at least as far as it can get now — is Dirac notation.

当您问量子信息理论家什么能为量子计算提供动力时,您将得到无数的答案-叠加,并行,纠缠,相干,yadda yadda yadda。 我要说的是,至少到现在为止,功率量子计算是狄拉克符号。

Dirac notation, also called bra–ket notation, is a way to write objects in linear algebra. We already used it above when we introduced qubits with |𝜓⟩. This is called a “ket”. The vertical bar “|” and the right angle bracket “⟩” come together to form the ket. The thing on the inside is just a label. The ket | ⟩ represents a vector in a particular complex linear space. Other notation used for the same thing uses underlines, arrows, or bold notation.

狄拉克(Dirac)表示法,也称为Braket表示法,是一种在线性代数中写入对象的方法。 在上面用| 𝜓⟩引入qubit时,我们已经在使用它。 这被称为“ ket”。 竖线“ |” 和直角括号“⟩”一起形成ket。 里面的东西只是一个标签。 地毯| ⟩表示特定复数线性空间中的向量。 用于同一事物的其他符号使用下划线,箭头或粗体符号。

Image for post

However you denote your vectors, you need to be able to distinguish them from the coefficients. Kets are perfect for this. They also make it convenient to enumerate bases in binary. We choose binary labeling to associate with the standard one when taking the concrete vector space of column vectors with complex valued entries. This is called the computational basis in quantum computing. When we expand vectors in this basis and find more than one non-zero component, we call that linear combination of basis vectors a superposition. In addition to |0⟩ and |1⟩, we have labels for some other special vectors, we call them the “plus state” |+⟩, “minus state” |−⟩ and some others.

无论您表示矢量,都需要能够将它们与系数区分开。 Kets非常适合此。 它们还使枚举二进制数的基数变得方便。 当采用具有复杂值条目的列向量的具体向量空间时,我们选择二进制标记与标准标记关联。 这称为量子计算中的计算基础 。 当我们在此基础上展开向量并找到多个非零分量时,我们将基础向量的线性组合称为叠加。 除了|0⟩和|1⟩之外,我们还有一些其他特殊矢量的标签,我们称它们为“正状态” | +⟩,“负状态” | −⟩等。

Image for post

In this canonical representation, used extensively in introductions to linear algebra, row vectors are created with the conjugate transpose, which swaps rows for columns and complex conjugates each entry of the vector. These are not vectors, but can be placed in one-to-one correspondence with them. In Dirac notation, they are called “bras”, and are written as ⟨ |, with an appropriate label as needed.

在此规范表示形式(广泛用于线性代数入门)中,使用共轭转置来创建行向量, 共轭转置将行交换为列,并将复数共轭转换为向量的每个项。 这些不是向量,但可以与它们一一对应。 在狄拉克(Dirac)表示法中,它们称为“ bras”,并用⟨|表示,并根据需要添加适当的标签。

Image for post

Abstractly, ⟨𝜙| maps any vector |𝜓⟩ to the inner product between |𝜙⟩ and |𝜓⟩, which in Dirac notation is ⟨𝜙|𝜓⟩. The computational basis is an orthonormal basis, which facilitates quick calculations in Dirac notation. For example, the norm of the vector |𝜓⟩ can be calculated as follows.

,| 将任何矢量| 𝜓⟩映射到| 𝜙⟩和| 𝜓⟩之间的内积,用Dirac表示法是⟨𝜙 | 𝜓⟩。 计算基础是正交基础,这有助于Dirac表示法的快速计算。 例如,向量||的范数可以如下计算。

Image for post

更改量子位 (To change a qubit)

演示地址

Those pictures we drew above are called circuits, both in classical computation and quantum computation. Each line, or wire, represents a qubit which can be labeled at various points to identify what the state of the qubit is. Circuits represent how the qubit state changes, one step at time, from left to right. The “steps” are unitary matrices, those that preserve the norm of the vector. In the context of computation, these are called gates.

我们上面绘制的那些图片在经典计算和量子计算中都称为电路 。 每一行中,或导线 ,表示可以在不同的点被标记以识别该量子位的状态是什么的一个量子位。 电路表示量子位状态如何从左到右一步变化。 “步骤”是unit矩阵,那些矩阵保持向量的范数。 在计算的上下文中,这些称为门。

Image for post

There are lots of important examples and you will get to know them quite intimately. Some quantum gates act just as logical operations would act on the binary digits representing the computational basis states. In some sense, these don’t add much beyond classical computation — though, they are important parts of more complicated quantum circuits.

有很多重要的例子,您将非常熟悉它们。 一些量子门的作用就像逻辑运算将作用在代表计算基础状态的二进制数字上一样。 从某种意义上讲,它们并没有增加经典计算之外的内容,尽管它们是更复杂的量子电路的重要组成部分。

Image for post

Other gates, like the relative phase gate, modify superpositions. By adding minus signs, components of vectors can start to cancel. This phenomenon is called inference and without it, the computation could be easily simulated with a classical algorithm. Sometimes it is said that quantum computation is just classical probabilistic computation with negative numbers.

其他门(例如相对相位门)会修改叠加。 通过添加减号,向量的成分可以开始消除。 这种现象称为推论 ,如果没有推论 ,则可以使用经典算法轻松模拟计算。 有时据说量子计算只是带有负数的经典概率计算。

Image for post

None of the above gates generate superpositions starting from basis states. Probably the most important gate is the Hadamard gate, which generates the states |+⟩ and |−⟩ from |0⟩ and |1⟩. A great deal of quantum algorithms, and all that you will meet, start by changing the canonical |0⟩ state to a “uniform superposition”. We will see next week how this generalises to multiple qubit states.

以上所有门都不从基态生成叠加。 可能最重要的门是Hadamard门 ,它从|0⟩和|1⟩生成状态| +⟩和| −⟩。 大量的量子算法以及您将要遇到的所有一切,都始于将规范的|0⟩状态更改为“均匀叠加”。 下周我们将看到这如何推广到多个量子位状态。

Image for post

生于统治 (Born to rule)

演示地址

The last topic we need to discuss is the infamous quantum measurement. Regardless of what the state of the qubit |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩ is in, “looking” at the qubit results in only ever |0⟩ or |1⟩. In physics, “looking” is called measurement, and is the result of fundamental probabilistic nature of quantum mechanics, which continues to cause much consternation to philosophers. For us, this is the model we must use, and so we will use it without much fuss. Of course, the result isn’t completely random and depends on the current state of the qubit we intend to measure. If the qubit state is |𝜓⟩ = 𝛼|0⟩ + 𝛽|1⟩, then the probability that |0⟩ will be observed is Pr(0|𝜓) = |𝛼|² and the similarly Pr(1|𝜓) = |𝛽|². Of course one of the alternatives must occur and so |𝛼|² + |𝛽|² = 1, which is where the unit norm and its preservation come from. When analysing a general quantum circuit, the numbers you need to know at the end of calculation are these probabilities.

我们需要讨论的最后一个主题是臭名昭著的量子测量。 不管量子位| 𝜓⟩ = 𝛼 |0⟩+ 𝛽 |1⟩处于什么状态,“看”量子位只会得到|0⟩或|1⟩。 在物理学中,“看”被称为测量,它是量子力学的基本概率性质的结果,这继续引起哲学家的极大震惊。 对于我们来说,这是我们必须使用的模型,因此我们将在使用它时不必大惊小怪。 当然,结果不是完全随机的,取决于我们要测量的量子位的当前状态。 如果量子位状态为| 𝜓⟩ = 𝛼 |0⟩+ 𝛽 |1⟩,那么|0⟩将被观测到的概率为Pr(0 | 𝜓)= | 𝛼 |²,类似地,Pr(1 | 𝜓) = | 𝛽 |²。 当然,必须出现一种替代方法,因此| 𝛼 |²+ | ​​𝛽 |²= 1,这是单位范数及其保存的来源。 分析一般的量子电路时,在计算结束时您需要知道的数字就是这些概率。

Image for post

The very last point is that the state of the qubit after measurement is definitely in the outcome observed. For example, if a qubit in state |𝜓⟩ was measured and |0⟩ observed, then the state after the measurement is |0⟩. This is independent of the initial state |𝜓⟩ and thus “looking” at quantum information is not a reversible process. This abrupt change is sometimes called collapse. And that is what I’m going to do if I write one more wor…

最后一点是,测量后的量子位状态肯定存在于观察到的结果中。 例如,如果测量了状态| 𝜓⟩的量子位并观察到|0⟩,则测量后的状态为|0⟩。 这与初始状态| 𝜓⟩无关,因此“看”量子信息不是可逆的过程。 这种突然的变化有时称为崩溃。 如果我再写一份工作,那将是我要做的……

资源资源 (Resources)

A good reference for all the standard quantum gates used in quantum information is the Wikipedia entry on Quantum logic gates.

有关量子信息中使用的所有标准量子门的一个很好的参考,是有关量子逻辑门的Wikipedia条目。

We have played a little fast and loose with “linear algebra”. The topic is much deeper than matrices and vectors. Research in quantum information science often requires a more abstract understanding of linear algebra. If you are up for a challenge, John Watrous’s text The Theory of Quantum Information is an excellent resource for learning the tools of the quantum information scientist.

我们使用“线性代数”玩得有点快。 这个话题比矩阵和向量要深得多。 量子信息科学的研究通常需要对线性代数有更抽象的理解。 如果您要挑战,John Watrous的著作《量子信息论》是学习量子信息科学家工具的绝佳资源。

翻译自: https://medium.com/swlh/what-is-a-qubit-dbce0a341c6a

量子位 评奖


http://www.taodudu.cc/news/show-7900647.html

相关文章:

  • 量子计算机的量子位,量子计算机六个量子位足以确定三个简单分子的基态
  • 美联储继续放鹰沪铜、棉花暴跌,沪铜认沽末日奇迹7天近200倍,棉花-PTA纺织套利持续下跌2022.6.24
  • 淀粉2207空头逼仓,玉米认沽大涨1-6倍,淀粉09-01正套2022.6.30
  • 黑色午后跳水——反弹结束?LPG认沽大涨,甲醇09-01季节性反套2022.5.18
  • 利空云集螺纹再次大跌,棕榈油认沽翻倍,豆菜粕价差反弹2022.5.6
  • 玻璃”低位“增仓滞涨,棕榈油认沽翻倍,棉花-PTA大幅下行2022.5.30
  • 商品政策顶?铁矿认沽大涨,鸡蛋养殖利润低位2022.4.19
  • 想知道期权买认购和卖认沽有何不同?赶快来看!
  • angular js 17年1月小结 (包括简单的指令和模块 服务等)
  • 160121iOS开发-常用第三方开源框架介绍(你了解的ios只是冰山一角)
  • ELK日志平台建设——设计篇——分布式日志处理系统设计
  • iOS开发-常用第三方开源框架介绍(你了解的ios只是冰山一角),ios冰山一角
  • python requests模块的安装和使用方法
  • jsp与数据库连接实例:数据库课程设计冰山一角(完整模块)
  • argparse模块详解
  • javascript模块_JavaScript模块:新手指南
  • oracle应收模块杂项收款,ORACLEEBSR12应收模块收款API研究.doc
  • 箭头能用css写出来么,纯css写箭头
  • 【Linux】vi/vim编辑器
  • mysql_题库详解
  • MySQL面经
  • MySQL数据库面试题(2022版)
  • 我把问烂了的⭐MySQL⭐面试题总结了一下
  • MySQL数据库面试题重点汇总
  • 2022年春招开始了,万字面试题集萃助你
  • MySQL面试题总结2
  • SQL Server 更改跟踪(Chang Tracking)监控表数据
  • Your PHP server doesnt have the MySQL module loaded or you can't use the mysql_(p)connect functions
  • Android sdk manager doesnt download packages
  • Node.js - User doesnt sign in. leancloud
  • 这篇关于量子位 评奖_什么是量子位?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



    http://www.chinasem.cn/article/172203

    相关文章

    Google 实现量子霸权!3分20秒运算,世界第一超算要跑1万年!

    大数据技术与架构 点击右侧关注,大数据开发领域最强公众号! 暴走大数据 点击右侧关注,暴走大数据! By  大数据技术与架构 场景描述:谷歌宣称“量子霸权”已经实现,他们首次在实验中证明了量子计算机对于传统架构计算机的优越性:在世界第一超算 Summit 需

    PolarDB之后,PawSQL如何进一步优化相关标量子查询?

    在数据分析领域里,相关标量子查询无疑是一把双刃剑:它功能强大,能解决许多复杂问题,同时又因其复杂性给数据库优化器带来了不小的挑战。当前,只有像Oracle这样的商业数据库巨头在这方面做得相对出色[1],在国产数据库领域,也只有PolarDB对其提供了一定的支持[2]。 除了PolarDB,领先的SQL优化引擎PawSQL也提供了对相关标量子查询进行基于成本的重写优化;此外,PawSQL还会合并查

    量子运算-计算新时代的开端

    1. 量子计算的基础概念 1.1 量子比特 (Qubit) 量子比特,或称Qubit,是量子计算的基本单位。与经典比特的二进制状态不同,量子比特可以处于多个状态的叠加态。这种状态的独特性源自量子力学的两个基本特性:叠加和纠缠。 数学表示: 在量子计算中,量子比特的状态可以用 ( |\psi\rangle = \alpha|0\rangle + \beta|1\rangle ) 来表示,其中

    2024 年 IBM 量子开发者大会:等你来

    在 2024 年 IBM Quantum™ 开发者大会上,与会者将获得 IBM Quantum 尖端工具和即将推出的路线图更新的独家、亲身预览,所有这些都围绕一个主题 — — Qiskit 的性能。 2024 年 IBM 量子开发者大会 在此申请 重要日期 7 月 24 日: 开放申请 8 月 12 日: 向参会者发送首轮录取通知书 9 月 30 日: 申请截止 10

    利用实用规模量子计算模拟宇宙中最极端的环境

    华盛顿大学和劳伦斯伯克利国家实验室最近的研究展示了可扩展的技术,有朝一日可以实现最高能量下的基础物理实验模拟。 目录 核物理和高能物理的实用规模模拟 我们的模拟方法 Qiskit 如何使我们的实验成为可能 展望量子模拟技术的未来 粒子物理学的标准模型囊括了我们所知道的关于构成我们日常生活的微小量子尺度粒子的几乎所有知识。这是一个了不起的成就,但它也是不完整的

    量子计算与未来的渗透技术(贰)

    第二篇:未来渗透技术与量子计算防御 1. 量子计算时代的渗透测试工具发展 量子渗透测试工具的潜在发展方向:构思和探讨基于量子计算的渗透测试工具,如用于破解密码和模拟量子攻击的工具。量子网络模拟:利用量子计算模拟复杂网络环境中的攻击和防御策略。 2. 实战示例二:量子网络模拟中的攻击策略 利用量子计算模拟工具(如 Qiskit)来设计和模拟量子攻击场景。 # 量子网络模拟的示例代码fro

    深入探讨量子计算领域在发展过程中所遇到的难题及其解决方案。

    一、引言 量子计算作为未来科技的重要方向,其潜力巨大,但同时也面临着诸多技术挑战。这些挑战不仅制约了量子计算的进一步发展,也考验着科学家和工程师们的智慧和毅力。本文将探讨量子计算面临的主要技术挑战,并分析其可能的解决方案和发展趋势。 二、量子计算面临的主要技术挑战 1. 量子比特的稳定性和可扩展性 量子比特(qubit)是量子计算的基本单元,其稳定性和可扩展性是量子计算发展的关键。然而,量

    全新量子计算技术!在硅中可以生成大规模量子比特

    内容来源:量子前哨(ID:Qforepost) 文丨沛贤/浪味仙  排版丨沛贤 深度好文:1600字丨6分钟阅读 摘要:研究人员利用气体环境在硅中形成被称为“色心”的可编程缺陷,首次利用飞秒激光,实现了在掺氢硅中按需精准创建量子比特,有助于实现更安全、更高效的量子互联网。 图片:考沙利亚-朱里亚(Kaushalya Jhuria)在实验室测试用于在硅片中制造量子

    量子革命 “不负众望“!即将见证首个商业量子应用案例?

    内容来源:量子前哨(ID:Qforepost) 文丨沛贤/浪味仙  排版丨沛贤 深度好文:1000字丨5分钟阅读 摘要:雀巢、联合利华和德国能源巨头 E.ON 表示,距离首个商用量子案例出现可能只需三年时间。 近日,在伦敦举办的量子计算峰会上,一个由雀巢、联合利华、全球性市场研究公司 Omdia 以及德国能源巨头 E.ON 组成的专家小组向与会者表示,预计在未来三至四年内,优化、模拟及

    新研究使VQE算法成功扩展到12个量子比特,误差抑制在两个数量级

    量子计算化学已成为量子计算的一个潜在应用领域。 混合量子-经典计算方法,如变分量子本征求解器,已被设计为解决量子化学问题有希望的解决方案。但该计算方法面对着因理论复杂性和实验不完善所带来的挑战,在实现可靠和准确结果方面被限制。因此,求解电子结构的实验工作,仍然局限于不可扩展或经典可模拟的假设,或者局限于几个具有较大误差的量子比特。 6月11日,中国科学技术大学郭少俊、钱浩然、龚明、朱晓