本文主要是介绍一个操作证明python数据可视化比excel强百倍:X轴刻度间隔显示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
一个操作证明python数据可视化比excel强百倍:X轴刻度间隔显示
代码:
x = df['date']
y1 = df['psavert']
y2 = df['unemploy']
# Plot Line1 (Left Y Axis)
fig, ax1 = plt.subplots(1,1,figsize=(30,9), dpi= 80)
ax1.plot(x, y1, color='tab:red')
# Plot Line2 (Right Y Axis)
ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis
ax2.plot(x, y2, color='tab:blue')
# Decorations
# ax1 (left Y axis)
ax1.set_xlabel('Year', fontsize=20)
ax1.tick_params(axis='x', rotation=0, labelsize=12)
ax1.set_ylabel('Personal Savings Rate', color='tab:red', fontsize=20)
ax1.tick_params(axis='y', rotation=0, labelcolor='tab:red' )
ax1.grid(alpha=.4)
# ax2 (right Y axis)
ax2.set_ylabel("# Unemployed (1000's)", color='tab:blue', fontsize=20)
ax2.tick_params(axis='y', labelcolor='tab:blue')
ax2.set_xticks(np.arange(0, len(x)))
ax2.set_xticklabels(x[::], rotation=90, fontdict={'fontsize':10})
# ax2.set_xticks(np.arange(0, len(x), 60))
# ax2.set_xticklabels(x[::60], rotation=90, fontdict={'fontsize':10})
ax2.set_title("Personal Savings Rate vs Unemployed: Plotting in Secondary Y Axis", fontsize=22)
fig.tight_layout()
plt.show()
这篇关于一个操作证明python数据可视化比excel强百倍:X轴刻度间隔显示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!