RNAseq分析:Step6(计算表达丰度)

2023-10-09 09:20

本文主要是介绍RNAseq分析:Step6(计算表达丰度),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前记

一、计算FPKM

二、计算reads数

后记


前记

RNA-seq技术是研究基因表达的常用方法之一,其表达丰度计算是RNA-seq数据分析的重要步骤之一。

RNA-seq表达丰度计算的基本流程如下:

  1. 序列比对:将测序数据比对到参考基因组,得到每个基因的计数。

  2. 转录本重构:使用转录本拼接软件,如Cufflinks或StringTie,将比对后的 Bam/Sam 文件转换为每个转录本的表达值。这里的转录本可能是已知的基因、未知的基因或转录本。

  3. 表达值的归一化:考虑样本间的技术差异和表达量大小的影响,对表达值进行归一化。常用的归一化方法包括RPKM、FPKM、TPM等,其中TPM是近年来推出的一种比较推荐的归一化方法。

  4. 差异表达分析:通过比较不同样本下的基因或转录本表达值,识别差异表达的基因或转录本。差异表达分析常用的软件包括DESeq2、edgeR和limma等。

  5. 基因本体注释和通路分析:将差异表达的基因或转录本进行功能注释,通常使用基因本体注释(GO)和通路分析(KEGG)等方法。这一步有助于研究人员理解基因在生物学过程中的功能和调控机制。

总的来说,RNA-seq表达丰度计算需要经历序列比对、转录本重构、表达值的归一化、差异表达分析和功能注释等步骤。这些步骤需要使用不同的软件和工具,根据实验设计和分析目的合理选择并组合使用。

本文主要介绍如何使用stringtie软件计算FPKM值以及如何利用HTSeq-count软件计算reads数目。

一、计算FPKM

使用stringtie计算基因和转录本的表达丰度。

#使用stringtie计算基因和转录本的FPKM
stringtie -e -p 2 -G ~/rnaseq/tair10_genome/tair10.gtf -A SRR3418005_genes.gtf -o SRR3418005_transcripts.gtf ~/rnaseq/hisat2_results/SRR3418005.bam &

每个bam文件处理之后会得到两个gtf文件,分别是genes.gtf文件和transcripts.gtf文件,文件中包含,基因或转录本的FPKM值信息。

 将得到四个样本的基因和转录本的gtf文件分别进行合并。

#删除第一行标题,以下步骤将四个gtf文件整合为一个
sed -i '1d' *_genes.gtf #排序并输出到merge文件夹下
mkdir merge
sort SRR3418005_genes.gtf > merge/SRR3418005_genes.gtf 
sort SRR3418006_genes.gtf > merge/SRR3418006_genes.gtf
sort SRR3418019_genes.gtf > merge/SRR3418019_genes.gtf
sort SRR3418020_genes.gtf > merge/SRR3418020_genes.gtf#切换到merge文件夹,操作如下
cd merge
join -t $'\t' SRR3418005_genes.gtf SRR3418006_genes.gtf | join - SRR3418019_genes.gtf | join - SRR3418020_genes.gtf > out_fpkm.gtf
awk -F ' ' '{print $1"\t"$2"\t"$3"\t"$4"\t"$5"\t"$5"\t"$6"\t"$7"\t"$8"\t"$16"\t"$24"\t"$32}' out_fpkm.gtf > fpkm.gtf #fpkm_gtf为最终的FPKM注释文件

二、计算reads数

#计算SRR3418005样本基因的counts数目
htseq-count -q -f bam -s no -i gene_id ~/rnaseq/hisat2_results/SRR3418005.bam ~/rnaseq/tair10_genome/tair10.gtf > SRR3418005.count &

计算过程如下所示:

 整合四个样本的count文件。

#count文件整合
join SRR3418005.count SRR3418006.count | join - SRR3418019.count | join - SRR3418020.count > count.txt 
sed -i 's/ /\t/g' count.txt

后记

以上是FPKM值计算和reads数计算的方法,后续会利用count.txt文件进行差异表达分析。

2023.8.24

----CXGG

这篇关于RNAseq分析:Step6(计算表达丰度)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/171863

相关文章

MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析

《MyBatis-Plus中Service接口的lambdaUpdate用法及实例分析》本文将详细讲解MyBatis-Plus中的lambdaUpdate用法,并提供丰富的案例来帮助读者更好地理解和应... 目录深入探索MyBATis-Plus中Service接口的lambdaUpdate用法及示例案例背景

MyBatis-Plus中静态工具Db的多种用法及实例分析

《MyBatis-Plus中静态工具Db的多种用法及实例分析》本文将详细讲解MyBatis-Plus中静态工具Db的各种用法,并结合具体案例进行演示和说明,具有很好的参考价值,希望对大家有所帮助,如有... 目录MyBATis-Plus中静态工具Db的多种用法及实例案例背景使用静态工具Db进行数据库操作插入

Go使用pprof进行CPU,内存和阻塞情况分析

《Go使用pprof进行CPU,内存和阻塞情况分析》Go语言提供了强大的pprof工具,用于分析CPU、内存、Goroutine阻塞等性能问题,帮助开发者优化程序,提高运行效率,下面我们就来深入了解下... 目录1. pprof 介绍2. 快速上手:启用 pprof3. CPU Profiling:分析 C

MySQL表锁、页面锁和行锁的作用及其优缺点对比分析

《MySQL表锁、页面锁和行锁的作用及其优缺点对比分析》MySQL中的表锁、页面锁和行锁各有特点,适用于不同的场景,表锁锁定整个表,适用于批量操作和MyISAM存储引擎,页面锁锁定数据页,适用于旧版本... 目录1. 表锁(Table Lock)2. 页面锁(Page Lock)3. 行锁(Row Lock

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制