基于matlab点云工具箱对点云进行处理一:去除地面,保留剩下的点

本文主要是介绍基于matlab点云工具箱对点云进行处理一:去除地面,保留剩下的点,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于matlab点云工具箱的点云地面分割(去除地面,保留剩下的点)

步骤:

  1. 读取velodyne数据包pcap文件内的点云数据
  2. 使用pcdownsample函数对点云数据进行体素化采样,减少点云数量
  3. 使用find函数对点云进行筛选
  4. 使用pcdnoise去除点云内的噪声
  5. 筛选低点的点云(地面一般较低)
  6. 使用pcfitplane函数匹配平面(地面)
  7. 输出

相关文件点我下载https://download.csdn.net/download/rmrgjxeivt/59553218

基于matlab点云工具箱对点云进行处理一:去除地面,保留剩下的点https://blog.csdn.net/rmrgjxeivt/article/details/121830344
基于matlab点云工具箱对点云进行处理二:对点云进行欧式聚类,获得聚类后点云簇的外接矩形https://blog.csdn.net/rmrgjxeivt/article/details/121830919
基于matlab点云工具箱对点云进行处理三:对点云进行欧式聚类,使用三角剖分处理后获取点云簇的外接凸多边形https://blog.csdn.net/rmrgjxeivt/article/details/121831507
基于matlab点云工具箱对点云进行处理四:对点云进行欧式聚类,并获得包围点云簇的外接凹多边形https://blog.csdn.net/rmrgjxeivt/article/details/121831934
在这里插入图片描述
在这里插入图片描述


% 读取激光的PCAP文件
% 筛选感兴趣区域
% 播放筛选后的点云veloReader = velodyneFileReader('2021-11-23-12-49-43_Velodyne-HDL-32-Data.pcap','VLP32c');%% 设置感兴趣区域vehPara.length = 5.5;
vehPara.width = 2.2;
vehPara.d = 2.3; % 轴距
vehPara.rearOverhang = 1; % 前悬
vehPara.rearOverhang = 1; % 后悬
vehPara.CG2Rear = 1.45; % 质心到后轴insRegion = [-20 50 -10 10 0 2]; % 感兴趣区域[minX maxX minY maxY]
groundRegion = [-1, 0.2]; % 地面区域,z轴方向xLimits = [insRegion(1), insRegion(2)];
yLimits = [insRegion(3), insRegion(4)];
zLimits = [insRegion(5), insRegion(6)]; % 原点在后轴中心,因此此处相对于轮芯高度player = pcplayer(xLimits,yLimits,zLimits);xlabel(player.Axes,'X (m)');
ylabel(player.Axes,'Y (m)');
zlabel(player.Axes,'Z (m)');veloReader.CurrentTime = veloReader.StartTime + seconds(0.3);disp(['frame数量',num2str(veloReader.NumberOfFrames)])pause(2)frameID = 2700;while(hasFrame(veloReader) && player.isOpen() && (veloReader.CurrentTime < veloReader.EndTime))
ptCloudObj = readFrame(veloReader,frameID);
frameIDtic
lidarLo = [3.5 0 1.1 0 0 0];% 取出XYZ
xTemp = ptCloudObj.Location(:,:,2)+lidarLo(1);
yTemp = -ptCloudObj.Location(:,:,1)+lidarLo(2);
zTemp = ptCloudObj.Location(:,:,3)+lidarLo(3);pc = [xTemp(:) yTemp(:) zTemp(:) single(ptCloudObj.Intensity(:))];% 对地面的点进行范围筛选
zMin = groundRegion(1);
zMax = groundRegion(2);pcObj = pointCloud(pc(:,1:3));
pcObj.Intensity = pc(:,4);pcOutNum = 30000; % 输出的点云数量objPointVeh = zeros(pcOutNum,4,'single');
objPointVeh(:,1) = single(insRegion(2));
objPointVeh(:,2) = single(insRegion(4));
objPointVeh(:,3) = single(insRegion(6));
objPointVeh(:,4) = single(0);% tic
%% 降低点云密度 coder会报错
%     gridStep = 0.05;
%     pcObj_downSample = pcdownsample(pcObj,'gridAverage',gridStep); % 降低点云密度maxNumPoints = 6;
pcObj_downSample = pcdownsample(pcObj,'nonuniformGridSample',maxNumPoints);%     percentage = 0.3;
%     pcObj_downSample = pcdownsample(pcObj,'random',percentage);%% 筛选感兴趣区域(单位米),并排除车身内部的点云
xLimits = [insRegion(1), insRegion(2)];
yLimits = [insRegion(3), insRegion(4)];
zLimits = [insRegion(5), insRegion(6)]; % 原点在后轴中心,因此此处相对于轮芯高度indices = find((pcObj_downSample.Location(:, 2) >= yLimits(1) ...& pcObj_downSample.Location(:,2) <=  yLimits(2) ...& pcObj_downSample.Location(:,1) >=  xLimits(1) ...& pcObj_downSample.Location(:,1) <=  xLimits(2) ...& pcObj_downSample.Location(:,3) <=  zLimits(2) ...& pcObj_downSample.Location(:,3) >=  zLimits(1) ...& ~(pcObj_downSample.Location(:,1)<(vehPara.length-vehPara.rearOverhang) ...& pcObj_downSample.Location(:,1)>(-vehPara.rearOverhang) ...& pcObj_downSample.Location(:,2)<vehPara.width/2 ...& pcObj_downSample.Location(:,2)>-vehPara.width/2)));% 设置感兴趣的点云区域if ~isempty(indices)pcObj_downSample = select(pcObj_downSample,indices);%% 去除噪声[pcObj_downSample,inlierIndices,~] = pcdenoise(pcObj_downSample);pcID_noNoise = 1:1:pcObj_downSample.Count;if ~isempty(inlierIndices)% 分离出地面% Set the maximum point-to-plane distance (2cm) for plane fitting.maxDistance = 0.2;% Set the normal vector of the plane.referenceVector = [0,0,1];% Set the maximum angular distance to 5 degrees.maxAngularDistance = 10;% 筛选出较低的点用于去除地面(地面较低)% 只对范围内的点进行平面拟合(很低的那一部分点)indices = find((pcObj_downSample.Location(:, 3) >= zMin ...& pcObj_downSample.Location(:, 3) <= zMax));if ~isempty(indices)pcObj_lier = select(pcObj_downSample,indices);pcID_lier = pcID_noNoise(indices);% Detect the first plane, the table, and extract it from the point cloud.% 输出不是地面的点[~,inlierIndices,outlierIndices] = pcfitplane(pcObj_lier,maxDistance,referenceVector,maxAngularDistance);pcID_outlier = pcID_lier(outlierIndices); % 不是地面的点的IDpcID_inlier = pcID_lier(inlierIndices); % 是地面的点的ID% 从点云中删除属于地面的点,获得过滤后的点云pcID_out = pcID_noNoise;pcID_out(pcID_inlier) = [];%             outlierIndices = [];if ~isempty(outlierIndices) % 非空才输出pcRemainObj = select(pcObj_downSample,pcID_out);elsepcRemainObj = pcObj_downSample;endelsepcRemainObj = pcObj_downSample;endcowPCRemain = size(pcRemainObj.Location)*[1;0];if cowPCRemain>pcOutNumcowPCRemain = pcOutNum;endobjPointVeh(1:cowPCRemain,:) = [pcRemainObj.Location pcRemainObj.Intensity];%         pcRemainObj = pcObj;%         cowPCRemain = size(pcRemainObj.Location)*[1;0];%         objPointVeh(1:cowPCRemain,:) = pcRemainObj.Location;end
end% figure(2)
% % pcshow(plane1)
% pcshow(pcPlanel)
% title('First Plane')% cowPCRemain = length(pcObj.Location(:,1));
% pcRemain(1:cowPCRemain,:) = pcObj.Location;% figure(3)
% % pcshow(plane1)
% pcshow(pcRemain)
% title('remainPtCloud')objVehPoint = objPointVeh;
%%
pcObjOut =   pointCloud(objVehPoint(:,1:3));
pcObjOut.Intensity = objVehPoint(:,4);frameID = frameID+1;tocview(player,pcObjOut);pause(0.02);end

这篇关于基于matlab点云工具箱对点云进行处理一:去除地面,保留剩下的点的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/171230

相关文章

QT进行CSV文件初始化与读写操作

《QT进行CSV文件初始化与读写操作》这篇文章主要为大家详细介绍了在QT环境中如何进行CSV文件的初始化、写入和读取操作,本文为大家整理了相关的操作的多种方法,希望对大家有所帮助... 目录前言一、CSV文件初始化二、CSV写入三、CSV读取四、QT 逐行读取csv文件五、Qt如何将数据保存成CSV文件前言

Java字符串处理全解析(String、StringBuilder与StringBuffer)

《Java字符串处理全解析(String、StringBuilder与StringBuffer)》:本文主要介绍Java字符串处理全解析(String、StringBuilder与StringBu... 目录Java字符串处理全解析:String、StringBuilder与StringBuffer一、St

浅析Java中如何优雅地处理null值

《浅析Java中如何优雅地处理null值》这篇文章主要为大家详细介绍了如何结合Lambda表达式和Optional,让Java更优雅地处理null值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录场景 1:不为 null 则执行场景 2:不为 null 则返回,为 null 则返回特定值或抛出异常场景

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

通过Spring层面进行事务回滚的实现

《通过Spring层面进行事务回滚的实现》本文主要介绍了通过Spring层面进行事务回滚的实现,包括声明式事务和编程式事务,具有一定的参考价值,感兴趣的可以了解一下... 目录声明式事务回滚:1. 基础注解配置2. 指定回滚异常类型3. ​不回滚特殊场景编程式事务回滚:1. ​使用 TransactionT

Java中使用Hutool进行AES加密解密的方法举例

《Java中使用Hutool进行AES加密解密的方法举例》AES是一种对称加密,所谓对称加密就是加密与解密使用的秘钥是一个,下面:本文主要介绍Java中使用Hutool进行AES加密解密的相关资料... 目录前言一、Hutool简介与引入1.1 Hutool简介1.2 引入Hutool二、AES加密解密基础

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

SpringSecurity6.0 如何通过JWTtoken进行认证授权

《SpringSecurity6.0如何通过JWTtoken进行认证授权》:本文主要介绍SpringSecurity6.0通过JWTtoken进行认证授权的过程,本文给大家介绍的非常详细,感兴趣... 目录项目依赖认证UserDetailService生成JWT token权限控制小结之前写过一个文章,从S

CSS去除a标签的下划线的几种方法

《CSS去除a标签的下划线的几种方法》本文给大家分享在CSS中,去除a标签(超链接)的下划线的几种方法,本文给大家介绍的非常详细,感兴趣的朋友一起看看吧... 在 css 中,去除a标签(超链接)的下划线主要有以下几种方法:使用text-decoration属性通用选择器设置:使用a标签选择器,将tex

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整