卷积平滑数据原理(有边缘效应)

2023-10-09 03:30

本文主要是介绍卷积平滑数据原理(有边缘效应),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、离散卷积的求法
假设两组数据
A(原始数据):[a b c d], B(平滑窗口)[1/2 1/3]
则A卷积B等于
(1) A*1/2 = a/2 b/2 c/2 d/2 (空) 不移位
(2) A*1/3 = (空) a/3 b/3 c/3 d/3 向右移一位
(3) (1) + (2) = a/2 b/2+a/3 c/2+b/3 d/2+c/3 d/3
二、卷积平滑数据
基于一的离散卷积求解过程,则卷积可以利用与平滑数据。
1、假设t的取值范围为-4~4平均分成100份,y = sin(t) + randn(100), randn(100)为100个标准正太分布中的随机取值(randn(100)为一个向量),则利用卷积来平滑数据的结果,其中平滑窗口为[1/10…..1/10] (10个1/10组成的向量):这里写图片描述
如图所示,原始数据为黑点,平滑数据为红色+号,在边缘部分数据变化趋势不准确,这是由于这里面使用的 python语句为:

convolution(y,window,'same') 
'''结果为数据集中间长度为Max(y,window)的结果,因此会有边缘效应'''

解释:由于平滑窗口为[1/10 1/10 1/10…..1/10],则基于一种离散卷积求解过程可得,其平滑结果为取本点与前面9个点之和的平均值。也就相当与每个点的增幅都被缩小了,因此可以用来平滑数据。居于此可得,当平滑窗口向量值越少时,数据越不平滑(每个点的增幅值被考虑的权重增大),如下例所示,平滑窗口为[1/2 1/2]:

这里写图片描述
解释:平滑数据为该点于前面一点的平均值,即每两点取一个平均值。
因此当平滑窗口越长时,数据越平滑,因为选取了更多的点取平均值,因此每一点的增幅权重将被降低,如图所示,平滑窗口为[1/50…1/50]
这里写图片描述
解释:如图所示平滑窗口为[1/50…1/50],此情况与原始数据形状偏离较大,因为数据越幅度越大的地方,增幅越小,再被平均了之后权重就变得更小。
为了更好的理解卷积平滑过程,令y = 2*t + randn(100),t的取值范围与正弦函数相同。如图所示
这里写图片描述
解释:平滑窗口为[1/10…/10]。
这里需要注意,无论平滑窗口中每一个元素取多小,结果都不会变成一条水平直线,因为一条直线每一点的增幅都是不变的,例如假设原始数据形状类似一条直线,且每一点增幅为0.1,则
(1)前一点原始:a(n);
卷积平滑之后(a(1)+a(2)+…+a(n))/n;
(2)本点a(n+1)
卷积平滑之后(a(2)+a(3)+…+a(n+1))/n
(3)两点之差(增幅):
原始:a(n+1)-a(n) = 0.1;
平滑:(a(n+1)-a(1))/n = n*0.1/n = 0.1;
所以卷积平滑数据只是平均每一点的增幅,当每一点的增幅都一样时,无论平滑窗口元素的值多小,都不会得到一条水平的直线(不考虑边缘效应),如图所示:
这里写图片描述
解释:平滑窗口为[1/50 1/50…1/50],且对应点与平滑窗口[1/10…1/10]的相同。这也解释了为什么正弦离散点平滑数据会与原始正弦离散点的图像有所不同,因为正弦函数每一点的增幅不同,其导数为cos(t),0点的增幅最大,pi/2点的增幅点最小,因此如果平滑窗口元素值过小时,越靠近极值点,由于其增幅很小,所以其平滑结果越偏离原始离散点。

三、结论
卷积平滑数据方法平滑的是每一点的增幅,且本点的平滑结果为前n点的平均值。适用于原始数据震动幅度不太大于理想数据的情形。

这篇关于卷积平滑数据原理(有边缘效应)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/170033

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X