数字IC前端学习笔记:数字乘法器的优化设计(Dadda Tree乘法器)

本文主要是介绍数字IC前端学习笔记:数字乘法器的优化设计(Dadda Tree乘法器),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关阅读

数字IC前端icon-default.png?t=N7T8https://blog.csdn.net/weixin_45791458/category_12173698.html?spm=1001.2014.3001.5482


         华莱士树仍然是一种比较规则的结构(这使得可以方便地生成树的结构),这导致了它所使用的全加器和半加器个数不是最少的,Dadda提出了一种改良华莱士树的方式,这后来被称为Dadda Tree。他使用了最少数量的全加器以及半加器来重构了树,且能保证树的级数(深度)不变,这就在节省硬件资源的情况下保证了相似的性能。

        达达树的压缩策略如下算法所示。

  1. d_{1}=2d_{j+1}=[1.5d_{j}],其中中括号表示向下取整。找到最大的j,使得至少一列部分积的深度大于d_{j}
  2. 使用全加器或半加器去压缩那些深度超过d_{j}的列,使得这些列的深度不大于d_{j},这里要考虑到来自低位的压缩进位以及尽可能少地使用器件。
  3. 重复步骤1和2直到部分积变成只有两行或者说j=1

        根据这个算法,可以得到dadda的树的结构,如图1所示。图中的斜杠/代表一个全加器,连接的分别是右上角的本位和以及左下角给高位的进位,带反斜杠\的/表示是半加器。

        具体的压缩过程为,首先按照规则找到最大的j为3,其中第4列(从右到左)有4列部分积,所以使用一个半加器压缩,第5列的部分积加上第4列的进位,一共有4列部分积,所以也需用一个半加器压缩。然后接着重复步骤1,找到最大的j为2,其中第3列有3列部分积,所以使用一个半加器压缩,第4列因为第3列的进位,所以有4列部分积,因此需要全加器压缩,第5、6列同理需要使用全加器压缩,得到最后2行部分积。最后使用向量合并器(可以是传播进位加法器,也可以是超前进位加法器)将部分积累加。

图1 dadda树乘法器的覆盖过程

        具体的Verilog代码实现见附录,Modelsim软件仿真截图如图2所示。使用Synopsis的综合工具Design Compiler综合的结果如图3所示,综合使用了0.13μm工艺库

图2 dadda树乘法器仿真结果

​​​​​​​​​​​​​​​​​​​​图3 dadda树乘法器综合结果

        在Design Compiler中使用report_timing命令,可以得到关键路径的延迟,如图4所示,可以看出延迟有1.54ns,略差于华莱士树,这是因为达达树最后的向量合并器的数据位宽较大。

 ​​​​​​​图4 dadda树乘法器关键路径报告

        在Design Compiler中使用report_area命令,报告所设计电路的面积占用情况,如图5所示,可以看到这个面积优于华莱士树乘法器,不考虑最后的向量合并器,达达树仅仅使用了三个全加器和三个半加器就完成了四位数据的部分积累加,相比之下,华莱士树使用了五个全加器和三个半加器,当数据位宽增加时,华莱士树乘法器对于加法器的需求增加也比达达树快,因此达达树是华莱士树的优化版,但达达树不具有华莱士树的规则的结构,设计起来会比较消耗时间和人力。

图5 dadda树乘法器面积报告

        dadda树乘法器的Verilog代码如下所示。

module Dadda_Multiplier (input      [3:0]    A      ,input      [3:0]    B      ,output  [7:0]    Sum
);wire [3:0] partial_product [3:0];  wire [1:0] W_level1_c,W_level1_carry;wire [3:0] W_level2_c,W_level2_carry;wire [6:0] W_level3[0:1];//产生部分积assign partial_product[0]=B[0]?A:0;assign partial_product[1]=B[1]?A:0;assign partial_product[2]=B[2]?A:0;assign partial_product[3]=B[3]?A:0;// level1Adder_half adder_half_u1 (.Mult1    (partial_product[2][1]),.Mult2    (partial_product[3][0]),.Res    (W_level1_c[0]),.Carry(W_level1_carry[0])); Adder_half adder_half_u2 (.Mult1    (partial_product[3][1]),.Mult2    (partial_product[2][2]),.Res    (W_level1_c[1]),.Carry(W_level1_carry[1]));// level2Adder_half adder_half_u3 (.Mult1    (partial_product[1][1]),.Mult2    (partial_product[2][0]),.Res    (W_level2_c[0]    ),.Carry(W_level2_carry[0]));Adder adder_u1 (.Mult1     (partial_product[0][3]),.Mult2     (partial_product[1][2]),.I_carry (W_level1_c[0]          ),.Res     (W_level2_c[1]          ),.Carry (W_level2_carry[1]      ));Adder adder_u2 (.Mult1     (partial_product[1][3]),.Mult2     (W_level1_c[1]          ),.I_carry (W_level1_carry[0]      ),.Res     (W_level2_c[2]          ),.Carry (W_level2_carry[2]      ));Adder adder_u3 (.Mult1     (partial_product[2][3]),.Mult2     (partial_product[3][2]),.I_carry (W_level1_carry[1]       ),.Res     (W_level2_c[3]          ),.Carry (W_level2_carry[3]      ));assign W_level3[0] = {partial_product[3][3], W_level2_c[3:1],     partial_product[0][2:0]};assign W_level3[1] = {W_level2_carry[3:0], W_level2_c[0], partial_product[1][0], 1'b0};assign Sum     = W_level3[0] + W_level3[1];endmodule

这篇关于数字IC前端学习笔记:数字乘法器的优化设计(Dadda Tree乘法器)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/169235

相关文章

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

React实现原生APP切换效果

《React实现原生APP切换效果》最近需要使用Hybrid的方式开发一个APP,交互和原生APP相似并且需要IM通信,本文给大家介绍了使用React实现原生APP切换效果,文中通过代码示例讲解的非常... 目录背景需求概览技术栈实现步骤根据 react-router-dom 文档配置好路由添加过渡动画使用

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

使用Vue.js报错:ReferenceError: “Vue is not defined“ 的原因与解决方案

《使用Vue.js报错:ReferenceError:“Vueisnotdefined“的原因与解决方案》在前端开发中,ReferenceError:Vueisnotdefined是一个常见... 目录一、错误描述二、错误成因分析三、解决方案1. 检查 vue.js 的引入方式2. 验证 npm 安装3.