STM32H723 CubeMX 三路FDCAN 代码

2023-10-08 23:20

本文主要是介绍STM32H723 CubeMX 三路FDCAN 代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时钟频率

在这里插入图片描述
在这里插入图片描述

FDCAN1

设置250kbit/s
在这里插入图片描述
在这里插入图片描述

FDCAN2

设置500kbit/s
在这里插入图片描述
在这里插入图片描述

FDCAN3

设置500kbit/s
在这里插入图片描述
在这里插入图片描述

fdcan.c

/* USER CODE BEGIN Header */
/********************************************************************************* @file    fdcan.c* @brief   This file provides code for the configuration*          of the FDCAN instances.******************************************************************************* @attention** Copyright (c) 2023 STMicroelectronics.* All rights reserved.** This software is licensed under terms that can be found in the LICENSE file* in the root directory of this software component.* If no LICENSE file comes with this software, it is provided AS-IS.********************************************************************************/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "fdcan.h"/* USER CODE BEGIN 0 */
#include "SEGGER_RTT.h"
#include "can_comm.h"
/* USER CODE END 0 */FDCAN_HandleTypeDef hfdcan1;
FDCAN_HandleTypeDef hfdcan2;
FDCAN_HandleTypeDef hfdcan3;/* FDCAN1 init function */
void MX_FDCAN1_Init(void)
{/* USER CODE BEGIN FDCAN1_Init 0 */FDCAN_FilterTypeDef FDCAN1_RXFilter;/* USER CODE END FDCAN1_Init 0 *//* USER CODE BEGIN FDCAN1_Init 1 *//* USER CODE END FDCAN1_Init 1 */hfdcan1.Instance = FDCAN1;hfdcan1.Init.FrameFormat = FDCAN_FRAME_CLASSIC;hfdcan1.Init.Mode = FDCAN_MODE_NORMAL;hfdcan1.Init.AutoRetransmission = DISABLE;hfdcan1.Init.TransmitPause = DISABLE;hfdcan1.Init.ProtocolException = DISABLE;hfdcan1.Init.NominalPrescaler = 10;hfdcan1.Init.NominalSyncJumpWidth = 8;hfdcan1.Init.NominalTimeSeg1 = 31;hfdcan1.Init.NominalTimeSeg2 = 8;hfdcan1.Init.DataPrescaler = 1;hfdcan1.Init.DataSyncJumpWidth = 1;hfdcan1.Init.DataTimeSeg1 = 0xF;hfdcan1.Init.DataTimeSeg2 = 0x4;hfdcan1.Init.MessageRAMOffset = 0;hfdcan1.Init.StdFiltersNbr = 1;hfdcan1.Init.ExtFiltersNbr = 0;hfdcan1.Init.RxFifo0ElmtsNbr = 32;hfdcan1.Init.RxFifo0ElmtSize = FDCAN_DATA_BYTES_8;hfdcan1.Init.RxFifo1ElmtsNbr = 0;hfdcan1.Init.RxFifo1ElmtSize = FDCAN_DATA_BYTES_8;hfdcan1.Init.RxBuffersNbr = 0;hfdcan1.Init.RxBufferSize = FDCAN_DATA_BYTES_8;hfdcan1.Init.TxEventsNbr = 0;hfdcan1.Init.TxBuffersNbr = 0;hfdcan1.Init.TxFifoQueueElmtsNbr = 6;hfdcan1.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;hfdcan1.Init.TxElmtSize = FDCAN_DATA_BYTES_8;if (HAL_FDCAN_Init(&hfdcan1) != HAL_OK){Error_Handler();}/* USER CODE BEGIN FDCAN1_Init 2 *///配置RX滤波器   FDCAN1_RXFilter.IdType=FDCAN_STANDARD_ID;                       //标准IDFDCAN1_RXFilter.FilterIndex=0;                                  //滤波器索引                   FDCAN1_RXFilter.FilterType=FDCAN_FILTER_MASK;                   //滤波器类型FDCAN1_RXFilter.FilterConfig=FDCAN_FILTER_TO_RXFIFO0;           //过滤器0关联到FIFO0  FDCAN1_RXFilter.FilterID1=0x0000;                               //32位IDFDCAN1_RXFilter.FilterID2=0x0000;                               //如果FDCAN配置为传统模式的话,这里是32位掩码HAL_FDCAN_ConfigFilter(&hfdcan1,&FDCAN1_RXFilter);HAL_FDCAN_Start(&hfdcan1);                               //开启FDCAN/* HAL_FDCAN_ConfigGlobalFilter()* 参数2:设置标准帧ID,接收的报文ID没有匹配上滤波器时,选择拒绝接收(没有匹配上时,可以选择放入FIFO0或者FIFO1)。* 参数3:设置拓展帧ID,接收的报文ID没有匹配上滤波器时,选择拒绝接收。* 参数4:设置是否拒绝远程标准帧,ENABLE代表拒绝接收。* 参数5:设置是否拒绝远程拓展帧,ENABLE代表拒绝接收。*/HAL_FDCAN_ConfigGlobalFilter(&hfdcan1,FDCAN_REJECT,FDCAN_REJECT,DISABLE,ENABLE); /* 设置FDCAN1滤波器0全局配置  */HAL_FDCAN_ActivateNotification(&hfdcan1,FDCAN_IT_RX_FIFO0_NEW_MESSAGE,0);/* USER CODE END FDCAN1_Init 2 */}
/* FDCAN2 init function */
void MX_FDCAN2_Init(void)
{/* USER CODE BEGIN FDCAN2_Init 0 */FDCAN_FilterTypeDef FDCAN2_RXFilter;/* USER CODE END FDCAN2_Init 0 *//* USER CODE BEGIN FDCAN2_Init 1 *//* USER CODE END FDCAN2_Init 1 */hfdcan2.Instance = FDCAN2;hfdcan2.Init.FrameFormat = FDCAN_FRAME_CLASSIC;hfdcan2.Init.Mode = FDCAN_MODE_NORMAL;hfdcan2.Init.AutoRetransmission = DISABLE;hfdcan2.Init.TransmitPause = DISABLE;hfdcan2.Init.ProtocolException = DISABLE;hfdcan2.Init.NominalPrescaler = 5;hfdcan2.Init.NominalSyncJumpWidth = 8;hfdcan2.Init.NominalTimeSeg1 = 31;hfdcan2.Init.NominalTimeSeg2 = 8;hfdcan2.Init.DataPrescaler = 1;hfdcan2.Init.DataSyncJumpWidth = 1;hfdcan2.Init.DataTimeSeg1 = 15;hfdcan2.Init.DataTimeSeg2 = 4;hfdcan2.Init.MessageRAMOffset = 0x406;hfdcan2.Init.StdFiltersNbr = 1;hfdcan2.Init.ExtFiltersNbr = 0;hfdcan2.Init.RxFifo0ElmtsNbr = 0;hfdcan2.Init.RxFifo0ElmtSize = FDCAN_DATA_BYTES_8;hfdcan2.Init.RxFifo1ElmtsNbr = 32;hfdcan2.Init.RxFifo1ElmtSize = FDCAN_DATA_BYTES_8;hfdcan2.Init.RxBuffersNbr = 0;hfdcan2.Init.RxBufferSize = FDCAN_DATA_BYTES_8;hfdcan2.Init.TxEventsNbr = 0;hfdcan2.Init.TxBuffersNbr = 0;hfdcan2.Init.TxFifoQueueElmtsNbr = 6;hfdcan2.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;hfdcan2.Init.TxElmtSize = FDCAN_DATA_BYTES_8;if (HAL_FDCAN_Init(&hfdcan2) != HAL_OK){Error_Handler();}/* USER CODE BEGIN FDCAN2_Init 2 *///配置RX滤波器   FDCAN2_RXFilter.IdType=FDCAN_STANDARD_ID;                       //标准IDFDCAN2_RXFilter.FilterIndex=0;                                  //滤波器索引                   FDCAN2_RXFilter.FilterType=FDCAN_FILTER_MASK;                   //滤波器类型FDCAN2_RXFilter.FilterConfig=FDCAN_FILTER_TO_RXFIFO1;           //过滤器0关联到FIFO1  FDCAN2_RXFilter.FilterID1=0x0000;                               //32位IDFDCAN2_RXFilter.FilterID2=0x0000;                               //如果FDCAN配置为传统模式的话,这里是32位掩码HAL_FDCAN_ConfigFilter(&hfdcan2,&FDCAN2_RXFilter);HAL_FDCAN_Start(&hfdcan2);                               //开启FDCAN/* HAL_FDCAN_ConfigGlobalFilter()* 参数2:设置标准帧ID,接收的报文ID没有匹配上滤波器时,选择拒绝接收(没有匹配上时,可以选择放入FIFO0或者FIFO1)。* 参数3:设置拓展帧ID,接收的报文ID没有匹配上滤波器时,选择拒绝接收。* 参数4:设置是否拒绝远程标准帧,ENABLE代表拒绝接收。* 参数5:设置是否拒绝远程拓展帧,ENABLE代表拒绝接收。*/HAL_FDCAN_ConfigGlobalFilter(&hfdcan2,FDCAN_REJECT,FDCAN_REJECT,DISABLE,ENABLE); /* 设置FDCAN1滤波器1全局配置  */HAL_FDCAN_ActivateNotification(&hfdcan2,FDCAN_IT_RX_FIFO1_NEW_MESSAGE,0);/* USER CODE END FDCAN2_Init 2 */}
/* FDCAN3 init function */
void MX_FDCAN3_Init(void)
{/* USER CODE BEGIN FDCAN3_Init 0 */FDCAN_FilterTypeDef FDCAN3_RXFilter;/* USER CODE END FDCAN3_Init 0 *//* USER CODE BEGIN FDCAN3_Init 1 *//* USER CODE END FDCAN3_Init 1 */hfdcan3.Instance = FDCAN3;hfdcan3.Init.FrameFormat = FDCAN_FRAME_CLASSIC;hfdcan3.Init.Mode = FDCAN_MODE_NORMAL;hfdcan3.Init.AutoRetransmission = DISABLE;hfdcan3.Init.TransmitPause = DISABLE;hfdcan3.Init.ProtocolException = DISABLE;hfdcan3.Init.NominalPrescaler = 5;hfdcan3.Init.NominalSyncJumpWidth = 8;hfdcan3.Init.NominalTimeSeg1 = 31;hfdcan3.Init.NominalTimeSeg2 = 8;hfdcan3.Init.DataPrescaler = 1;hfdcan3.Init.DataSyncJumpWidth = 1;hfdcan3.Init.DataTimeSeg1 = 15;hfdcan3.Init.DataTimeSeg2 = 4;hfdcan3.Init.MessageRAMOffset = 0x800;hfdcan3.Init.StdFiltersNbr = 1;hfdcan3.Init.ExtFiltersNbr = 0;hfdcan3.Init.RxFifo0ElmtsNbr = 0;hfdcan3.Init.RxFifo0ElmtSize = FDCAN_DATA_BYTES_8;hfdcan3.Init.RxFifo1ElmtsNbr = 32;hfdcan3.Init.RxFifo1ElmtSize = FDCAN_DATA_BYTES_8;hfdcan3.Init.RxBuffersNbr = 0;hfdcan3.Init.RxBufferSize = FDCAN_DATA_BYTES_8;hfdcan3.Init.TxEventsNbr = 0;hfdcan3.Init.TxBuffersNbr = 0;hfdcan3.Init.TxFifoQueueElmtsNbr = 6;hfdcan3.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION;hfdcan3.Init.TxElmtSize = FDCAN_DATA_BYTES_8;if (HAL_FDCAN_Init(&hfdcan3) != HAL_OK){Error_Handler();}/* USER CODE BEGIN FDCAN3_Init 2 *///配置RX滤波器   FDCAN3_RXFilter.IdType=FDCAN_STANDARD_ID;                       //标准IDFDCAN3_RXFilter.FilterIndex=0;                                  //滤波器索引                   FDCAN3_RXFilter.FilterType=FDCAN_FILTER_MASK;                   //滤波器类型FDCAN3_RXFilter.FilterConfig=FDCAN_FILTER_TO_RXFIFO1;           //过滤器0关联到FIFO1  FDCAN3_RXFilter.FilterID1=0x0000;                               //32位IDFDCAN3_RXFilter.FilterID2=0x0000;                               //如果FDCAN配置为传统模式的话,这里是32位掩码HAL_FDCAN_ConfigFilter(&hfdcan3,&FDCAN3_RXFilter);HAL_FDCAN_Start(&hfdcan3);                               //开启FDCAN/* HAL_FDCAN_ConfigGlobalFilter()* 参数2:设置标准帧ID,接收的报文ID没有匹配上滤波器时,选择拒绝接收(没有匹配上时,可以选择放入FIFO0或者FIFO1)。* 参数3:设置拓展帧ID,接收的报文ID没有匹配上滤波器时,选择拒绝接收。* 参数4:设置是否拒绝远程标准帧,ENABLE代表拒绝接收。* 参数5:设置是否拒绝远程拓展帧,ENABLE代表拒绝接收。*/HAL_FDCAN_ConfigGlobalFilter(&hfdcan3,FDCAN_REJECT,FDCAN_REJECT,DISABLE,ENABLE); /* 设置FDCAN1滤波器1全局配置  */HAL_FDCAN_ActivateNotification(&hfdcan3,FDCAN_IT_RX_FIFO1_NEW_MESSAGE,0);/* USER CODE END FDCAN3_Init 2 */}static uint32_t HAL_RCC_FDCAN_CLK_ENABLED=0;void HAL_FDCAN_MspInit(FDCAN_HandleTypeDef* fdcanHandle)
{GPIO_InitTypeDef GPIO_InitStruct = {0};RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};if(fdcanHandle->Instance==FDCAN1){/* USER CODE BEGIN FDCAN1_MspInit 0 *//* USER CODE END FDCAN1_MspInit 0 *//** Initializes the peripherals clock*/PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_FDCAN;PeriphClkInitStruct.FdcanClockSelection = RCC_FDCANCLKSOURCE_PLL;if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK){Error_Handler();}/* FDCAN1 clock enable */HAL_RCC_FDCAN_CLK_ENABLED++;if(HAL_RCC_FDCAN_CLK_ENABLED==1){__HAL_RCC_FDCAN_CLK_ENABLE();}__HAL_RCC_GPIOB_CLK_ENABLE();/**FDCAN1 GPIO ConfigurationPB8     ------> FDCAN1_RXPB9     ------> FDCAN1_TX*/GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_9;GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;GPIO_InitStruct.Alternate = GPIO_AF9_FDCAN1;HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);/* FDCAN1 interrupt Init */HAL_NVIC_SetPriority(FDCAN1_IT0_IRQn, 11, 0);HAL_NVIC_EnableIRQ(FDCAN1_IT0_IRQn);/* USER CODE BEGIN FDCAN1_MspInit 1 *//* USER CODE END FDCAN1_MspInit 1 */}else if(fdcanHandle->Instance==FDCAN2){/* USER CODE BEGIN FDCAN2_MspInit 0 *//* USER CODE END FDCAN2_MspInit 0 *//** Initializes the peripherals clock*/PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_FDCAN;PeriphClkInitStruct.FdcanClockSelection = RCC_FDCANCLKSOURCE_PLL;if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK){Error_Handler();}/* FDCAN2 clock enable */HAL_RCC_FDCAN_CLK_ENABLED++;if(HAL_RCC_FDCAN_CLK_ENABLED==1){__HAL_RCC_FDCAN_CLK_ENABLE();}__HAL_RCC_GPIOB_CLK_ENABLE();/**FDCAN2 GPIO ConfigurationPB12     ------> FDCAN2_RXPB13     ------> FDCAN2_TX*/GPIO_InitStruct.Pin = GPIO_PIN_12|GPIO_PIN_13;GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;GPIO_InitStruct.Alternate = GPIO_AF9_FDCAN2;HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);/* FDCAN2 interrupt Init */HAL_NVIC_SetPriority(FDCAN2_IT0_IRQn, 12, 0);HAL_NVIC_EnableIRQ(FDCAN2_IT0_IRQn);/* USER CODE BEGIN FDCAN2_MspInit 1 *//* USER CODE END FDCAN2_MspInit 1 */}else if(fdcanHandle->Instance==FDCAN3){/* USER CODE BEGIN FDCAN3_MspInit 0 *//* USER CODE END FDCAN3_MspInit 0 *//** Initializes the peripherals clock*/PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_FDCAN;PeriphClkInitStruct.FdcanClockSelection = RCC_FDCANCLKSOURCE_PLL;if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK){Error_Handler();}/* FDCAN3 clock enable */HAL_RCC_FDCAN_CLK_ENABLED++;if(HAL_RCC_FDCAN_CLK_ENABLED==1){__HAL_RCC_FDCAN_CLK_ENABLE();}__HAL_RCC_GPIOD_CLK_ENABLE();/**FDCAN3 GPIO ConfigurationPD12     ------> FDCAN3_RXPD13     ------> FDCAN3_TX*/GPIO_InitStruct.Pin = GPIO_PIN_12|GPIO_PIN_13;GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;GPIO_InitStruct.Alternate = GPIO_AF5_FDCAN3;HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);/* FDCAN3 interrupt Init */HAL_NVIC_SetPriority(FDCAN3_IT0_IRQn, 13, 0);HAL_NVIC_EnableIRQ(FDCAN3_IT0_IRQn);/* USER CODE BEGIN FDCAN3_MspInit 1 *//* USER CODE END FDCAN3_MspInit 1 */}
}void HAL_FDCAN_MspDeInit(FDCAN_HandleTypeDef* fdcanHandle)
{if(fdcanHandle->Instance==FDCAN1){/* USER CODE BEGIN FDCAN1_MspDeInit 0 *//* USER CODE END FDCAN1_MspDeInit 0 *//* Peripheral clock disable */HAL_RCC_FDCAN_CLK_ENABLED--;if(HAL_RCC_FDCAN_CLK_ENABLED==0){__HAL_RCC_FDCAN_CLK_DISABLE();}/**FDCAN1 GPIO ConfigurationPB8     ------> FDCAN1_RXPB9     ------> FDCAN1_TX*/HAL_GPIO_DeInit(GPIOB, GPIO_PIN_8|GPIO_PIN_9);/* FDCAN1 interrupt Deinit */HAL_NVIC_DisableIRQ(FDCAN1_IT0_IRQn);/* USER CODE BEGIN FDCAN1_MspDeInit 1 *//* USER CODE END FDCAN1_MspDeInit 1 */}else if(fdcanHandle->Instance==FDCAN2){/* USER CODE BEGIN FDCAN2_MspDeInit 0 *//* USER CODE END FDCAN2_MspDeInit 0 *//* Peripheral clock disable */HAL_RCC_FDCAN_CLK_ENABLED--;if(HAL_RCC_FDCAN_CLK_ENABLED==0){__HAL_RCC_FDCAN_CLK_DISABLE();}/**FDCAN2 GPIO ConfigurationPB12     ------> FDCAN2_RXPB13     ------> FDCAN2_TX*/HAL_GPIO_DeInit(GPIOB, GPIO_PIN_12|GPIO_PIN_13);/* FDCAN2 interrupt Deinit */HAL_NVIC_DisableIRQ(FDCAN2_IT0_IRQn);/* USER CODE BEGIN FDCAN2_MspDeInit 1 *//* USER CODE END FDCAN2_MspDeInit 1 */}else if(fdcanHandle->Instance==FDCAN3){/* USER CODE BEGIN FDCAN3_MspDeInit 0 *//* USER CODE END FDCAN3_MspDeInit 0 *//* Peripheral clock disable */HAL_RCC_FDCAN_CLK_ENABLED--;if(HAL_RCC_FDCAN_CLK_ENABLED==0){__HAL_RCC_FDCAN_CLK_DISABLE();}/**FDCAN3 GPIO ConfigurationPD12     ------> FDCAN3_RXPD13     ------> FDCAN3_TX*/HAL_GPIO_DeInit(GPIOD, GPIO_PIN_12|GPIO_PIN_13);/* FDCAN3 interrupt Deinit */HAL_NVIC_DisableIRQ(FDCAN3_IT0_IRQn);/* USER CODE BEGIN FDCAN3_MspDeInit 1 *//* USER CODE END FDCAN3_MspDeInit 1 */}
}/* USER CODE BEGIN 1 */
/*** 函数功能: FIFO0的接收中断回调函数* 输入参数: RxFifo0ITs:返回标志位* 返回值:  void* 说明:*      1.FDCAN1使用RXFIFO0*/
void HAL_FDCAN_RxFifo0Callback(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo0ITs)
{uint8_t i=0;uint8_t rxdata[8];FDCAN_RxHeaderTypeDef FDCAN1_RxHeader;
//	SEGGER_RTT_printf(0,"HAL_FDCAN_RxFifo0Callback\n");if((RxFifo0ITs&FDCAN_IT_RX_FIFO0_NEW_MESSAGE)!=RESET)   //FIFO0新数据中断{//提取FIFO0中接收到的数据HAL_FDCAN_GetRxMessage(hfdcan,FDCAN_RX_FIFO0,&FDCAN1_RxHeader,rxdata);//			  SEGGER_RTT_printf(0,"FDCAN1_RxHeader id:%x\r\n",FDCAN1_RxHeader.Identifier);
//        SEGGER_RTT_printf(0,"FDCAN1_RxHeader len:%d\r\n",FDCAN1_RxHeader.DataLength>>16);
//        for(i=0;i<8;i++)
//        SEGGER_RTT_printf(0,"FDCAN1_RxHeader rxdata[%d]:%d\r\n",i,rxdata[i]);}
}/*** 函数功能: FIFO1的接收中断回调函数* 输入参数: RxFifo0ITs:返回标志位* 返回值:  void* 说明:*     1、FDCAN2使用RXFIFO1*/
void HAL_FDCAN_RxFifo1Callback(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo1ITs)
{uint8_t i=0;uint8_t rxdata[8];FDCAN_RxHeaderTypeDef FDCAN2_RxHeader;FDCAN_RxHeaderTypeDef FDCAN3_RxHeader;if((RxFifo1ITs&FDCAN_IT_RX_FIFO1_NEW_MESSAGE)!=RESET)   //FIFO1新数据中断{//提取FIFO0中接收到的数据HAL_FDCAN_GetRxMessage(hfdcan,FDCAN_RX_FIFO1,&FDCAN2_RxHeader,rxdata);SEGGER_RTT_printf(0,"FDCAN2_RxHeader id:%x\r\n",FDCAN2_RxHeader.Identifier);SEGGER_RTT_printf(0,"FDCAN2_RxHeader len:%d\r\n",FDCAN2_RxHeader.DataLength>>16);for(i=0;i<8;i++)SEGGER_RTT_printf(0,"FDCAN2_RxHeader rxdata[%d]:%d\r\n",i,rxdata[i]);}if((RxFifo1ITs&FDCAN_IT_RX_FIFO1_NEW_MESSAGE)!=RESET)   //FIFO1新数据中断{//提取FIFO0中接收到的数据HAL_FDCAN_GetRxMessage(hfdcan,FDCAN_RX_FIFO1,&FDCAN3_RxHeader,rxdata);SEGGER_RTT_printf(0,"FDCAN3_RxHeader id:%#x\r\n",FDCAN3_RxHeader.Identifier);SEGGER_RTT_printf(0,"FDCAN3_RxHeader len:%d\r\n",FDCAN3_RxHeader.DataLength>>16);for(i=0;i<8;i++)SEGGER_RTT_printf(0,"FDCAN3_RxHeader rxdata[%d]:%d\r\n",i,rxdata[i]);}}
/* USER CODE END 1 */

新增文件 can_comm.c

#include "can_comm.h"//CAN_TxHeaderTypeDef TxHeader; // 发送
//CAN_RxHeaderTypeDef RxHeader; // 接收FDCAN_TxHeaderTypeDef FDCAN1_TxHeader; // 发送
FDCAN_RxHeaderTypeDef FDCAN1_RxHeader; // 接收FDCAN_TxHeaderTypeDef FDCAN2_TxHeader; // 发送
FDCAN_RxHeaderTypeDef FDCAN2_RxHeader; // 接收FDCAN_TxHeaderTypeDef FDCAN3_TxHeader; // 发送
FDCAN_RxHeaderTypeDef FDCAN3_RxHeader; // 接收#if 1
//调试好的//注意:数据长度必须用 FDCAN_DLC_BYTES_8
uint8_t FDCAN1_Send_Msg(uint8_t* msg,uint32_t len)
{	FDCAN1_TxHeader.Identifier=0x12;                           //32位IDFDCAN1_TxHeader.IdType=FDCAN_STANDARD_ID;                  //标准IDFDCAN1_TxHeader.TxFrameType=FDCAN_DATA_FRAME;              //数据帧FDCAN1_TxHeader.DataLength=len;                            //数据长度FDCAN1_TxHeader.ErrorStateIndicator=FDCAN_ESI_ACTIVE;            FDCAN1_TxHeader.BitRateSwitch=FDCAN_BRS_OFF;               //关闭速率切换FDCAN1_TxHeader.FDFormat=FDCAN_CLASSIC_CAN;                //传统的CAN模式FDCAN1_TxHeader.TxEventFifoControl=FDCAN_NO_TX_EVENTS;     //无发送事件FDCAN1_TxHeader.MessageMarker=0;                           if(HAL_FDCAN_AddMessageToTxFifoQ(&hfdcan1,&FDCAN1_TxHeader,msg)!=HAL_OK) {SEGGER_RTT_printf(0, "FDCAN1_Send_Msg false\n"); //调试通用return 1;//发送}SEGGER_RTT_printf(0, "FDCAN1_Send_Msg true\n"); //调试通用return 0;	
}//注意:数据长度必须用 FDCAN_DLC_BYTES_8
uint8_t FDCAN2_Send_Msg(uint8_t* msg,uint32_t len)
{	FDCAN2_TxHeader.Identifier=0x12;                           //32位IDFDCAN2_TxHeader.IdType=FDCAN_STANDARD_ID;                  //标准IDFDCAN2_TxHeader.TxFrameType=FDCAN_DATA_FRAME;              //数据帧FDCAN2_TxHeader.DataLength=len;                            //数据长度FDCAN2_TxHeader.ErrorStateIndicator=FDCAN_ESI_ACTIVE;            FDCAN2_TxHeader.BitRateSwitch=FDCAN_BRS_OFF;               //关闭速率切换FDCAN2_TxHeader.FDFormat=FDCAN_CLASSIC_CAN;                //传统的CAN模式FDCAN2_TxHeader.TxEventFifoControl=FDCAN_NO_TX_EVENTS;     //无发送事件FDCAN2_TxHeader.MessageMarker=0;                           if(HAL_FDCAN_AddMessageToTxFifoQ(&hfdcan2,&FDCAN2_TxHeader,msg)!=HAL_OK) {SEGGER_RTT_printf(0, "FDCAN2_Send_Msg false\n"); //调试通用return 1;//发送}SEGGER_RTT_printf(0, "FDCAN2_Send_Msg true\n"); //调试通用return 0;	
}//注意:数据长度必须用 FDCAN_DLC_BYTES_8
uint8_t FDCAN3_Send_Msg(uint8_t* msg,uint32_t len)
{	FDCAN3_TxHeader.Identifier=0x12;                           //32位IDFDCAN3_TxHeader.IdType=FDCAN_STANDARD_ID;                  //标准IDFDCAN3_TxHeader.TxFrameType=FDCAN_DATA_FRAME;              //数据帧FDCAN3_TxHeader.DataLength=len;                            //数据长度FDCAN3_TxHeader.ErrorStateIndicator=FDCAN_ESI_ACTIVE;            FDCAN3_TxHeader.BitRateSwitch=FDCAN_BRS_OFF;               //关闭速率切换FDCAN3_TxHeader.FDFormat=FDCAN_CLASSIC_CAN;                //传统的CAN模式FDCAN3_TxHeader.TxEventFifoControl=FDCAN_NO_TX_EVENTS;     //无发送事件FDCAN3_TxHeader.MessageMarker=0;                           if(HAL_FDCAN_AddMessageToTxFifoQ(&hfdcan3,&FDCAN3_TxHeader,msg)!=HAL_OK) {SEGGER_RTT_printf(0, "FDCAN3_Send_Msg false\n"); //调试通用return 1;//发送}SEGGER_RTT_printf(0, "FDCAN3_Send_Msg true\n"); //调试通用return 0;	
}//注意:数据长度必须用 FDCAN_DLC_BYTES_8
uint8_t FDCAN1_Send_Msg_TWTY_TPSLS(uint8_t* msg,uint32_t len)
{	FDCAN1_TxHeader.Identifier=0x18FFA017;                           //32位IDFDCAN1_TxHeader.IdType=FDCAN_EXTENDED_ID;                  //扩展IDFDCAN1_TxHeader.TxFrameType=FDCAN_DATA_FRAME;              //数据帧FDCAN1_TxHeader.DataLength=len;                            //数据长度  FDCAN_DLC_BYTES_64FDCAN1_TxHeader.ErrorStateIndicator=FDCAN_ESI_ACTIVE;            FDCAN1_TxHeader.BitRateSwitch=FDCAN_BRS_OFF;               //关闭速率切换 FDCAN_BRS_ONFDCAN1_TxHeader.FDFormat=FDCAN_CLASSIC_CAN;                //传统的CAN模式  FDCAN_FD_CANFDCAN1_TxHeader.TxEventFifoControl=FDCAN_NO_TX_EVENTS;     //无发送事件FDCAN1_TxHeader.MessageMarker=0;                           if(HAL_FDCAN_AddMessageToTxFifoQ(&hfdcan1,&FDCAN1_TxHeader,msg)!=HAL_OK) {SEGGER_RTT_printf(0, "FDCAN1_Send_Msg false\n"); //调试通用return 1;//发送}SEGGER_RTT_printf(0, "FDCAN1_Send_Msg true\n"); //调试通用return 0;	
}
#endif 

main.c

uint8_t canbuf[8] = {0x55,0x57,0x02,0x03,0x04,0x05,0x06,0x07};
FDCAN1_Send_Msg(canbuf,FDCAN_DLC_BYTES_8);
FDCAN2_Send_Msg(canbuf,FDCAN_DLC_BYTES_8);
FDCAN3_Send_Msg(canbuf,FDCAN_DLC_BYTES_8);

现象

在这里插入图片描述

这篇关于STM32H723 CubeMX 三路FDCAN 代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/168690

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时