每日一题 72编辑距离(LCS)(灵神笔记)

2023-10-08 12:28

本文主要是介绍每日一题 72编辑距离(LCS)(灵神笔记),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目

编辑距离
你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

插入一个字符
删除一个字符
替换一个字符

示例 1:

输入:word1 = “horse”, word2 = “ros”
输出:3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)
示例 2:

输入:word1 = “intention”, word2 = “execution”
输出:5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)

提示:

0 <= word1.length, word2.length <= 500
word1 和 word2 由小写英文字母组成

题解

记忆化搜索

class Solution {private char[] s, t;private int[][] cache;public int minDistance(String word1, String word2) {s = word1.toCharArray();t = word2.toCharArray();int n = s.length, m = t.length;cache = new int[n][m];for (int i = 0; i < n; i++) {Arrays.fill(cache[i],-1);}return dfs(n - 1, m - 1);}public int dfs(int i, int j) {//与LCS相同,dfs(i,j-1)相当于插入,dfs(i-1,j)相当于删除,dfs(i-1,j-1)相当于替换if (i < 0) {return j + 1;}if (j < 0) {return i + 1;}if (cache[i][j] != -1) {return cache[i][j];}if (s[i] == t[j]) {return cache[i][j] = dfs(i - 1, j - 1);}return cache[i][j] = Math.min(Math.min(dfs(i,j-1),dfs(i-1,j)),dfs(i-1,j-1))+1;}
}

递推

class Solution {public int minDistance(String word1, String word2) {char[] s = word1.toCharArray();char[] t = word2.toCharArray();int n = s.length, m = t.length;int[][] f = new int[n + 1][m + 1];for (int j = 1; j <= m; j++) {f[0][j] = j;}for (int i = 0; i < n; i++) {f[i + 1][0] = i + 1;for (int j = 0; j < m; j++) {f[i + 1][j + 1] = s[i] == t[j] ? f[i][j] :Math.min(Math.min(f[i][j + 1], f[i + 1][j]),f[i][j]) + 1;}}return f[n][m];}
}

空间优化

class Solution {public int minDistance(String word1, String word2) {char[] t = word2.toCharArray();int m = t.length;int[] f = new int[m + 1];for (int j = 1; j <= m; j++) {f[j] = j;}for (char x : word1.toCharArray()) {int pre = f[0];f[0]++;for (int j = 0; j < m; j++) {int tmp = f[j + 1];f[j + 1] = x == t[j] ? pre : Math.min(Math.min(f[j + 1],f[j]),pre) + 1;pre = tmp;}}return f[m];}
}

这篇关于每日一题 72编辑距离(LCS)(灵神笔记)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/165255

相关文章

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

如何解决Pycharm编辑内容时有光标的问题

《如何解决Pycharm编辑内容时有光标的问题》文章介绍了如何在PyCharm中配置VimEmulator插件,包括检查插件是否已安装、下载插件以及安装IdeaVim插件的步骤... 目录Pycharm编辑内容时有光标1.如果Vim Emulator前面有对勾2.www.chinasem.cn如果tools工

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

uva 10066 LCS

题意: 最长公共子序列。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟)

【每日一题】LeetCode 2181.合并零之间的节点(链表、模拟) 题目描述 给定一个链表,链表中的每个节点代表一个整数。链表中的整数由 0 分隔开,表示不同的区间。链表的开始和结束节点的值都为 0。任务是将每两个相邻的 0 之间的所有节点合并成一个节点,新节点的值为原区间内所有节点值的和。合并后,需要移除所有的 0,并返回修改后的链表头节点。 思路分析 初始化:创建一个虚拟头节点

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个