LongLoRA:超长上下文,大语言模型高效微调方法

2023-10-08 07:04

本文主要是介绍LongLoRA:超长上下文,大语言模型高效微调方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

麻省理工学院和香港中文大学联合发布了LongLoRA,这是一种全新的微调方法,可以增强大语言模型的上下文能力,而无需消耗大量算力资源。

通常,想增加大语言模型的上下文处理能力,需要更多的算力支持。例如,将上下文长度从2048扩展至8192,需要多消耗16倍算力。

LongLoRA在开源模型LLaMA2 7B/13B/70B上进行了试验,将上下文原始长度扩展至32K、64K、100K,所需要的算力资源却很少。

开源地址:https://github.com/dvlab-research/LongLoRA

论文地址:https://arxiv.org/abs/2309.12307

在这里插入图片描述

LongLoRA的高效微调方法

根据LongLoRA的论文介绍,采用了两大步骤完成了高效微调。第一,在训练期间使用一种更简单的注意力形式(聚焦于特定信息),开发者称之为转变短注意力(S2-Attn)。

这种新的注意力方法有助于节省大量的计算能力,而且几乎与常规的注意力方法一样有效,在训练过程中发挥了重要作用。

在这里插入图片描述

第二,重新挖掘了一种有效扩大上下文(用于训练的信息量)的方法。开发人员发现,一种名为LoRA的方法对此非常有效,尤其是当与可训练的嵌入和规范化一起使用时。

LongLoRA在各种任务上都显示出了优异的结果,可以与不同大小的LLMs一起使用。它可以将用于训练的数据量从4k增加到100k,对于另一个模型,可以增加到32k,所有这些都在一台强大的计算机机器上完成。此外,它与其他现有技术兼容性很强,并不会改变原始模型设计架构。

在这里插入图片描述

此外,为了让 LongLoRA 更加实用、高效,开发者还整理了一个名为 LongQA 的数据集,其中包含 3000 多对用于训练的问题和答案。这使得 LongLoRA 还能有效改进大语言模型的输出能力。

在这里插入图片描述

研究发现

该研究评估了Proof-pile 和 PG19数据集上的不同模型。研究发现,在训练过程中,随着上下文大小的增加,模型的表现更好,显示了其微调方法的有效性。

简单来说,使用更多信息进行训练,将会带来更好的结果。例如,当上下文窗口大小从 8192 增加到 32768 时,一个模型的困惑度性能从 2.72 提高到 2.50。

该研究还探讨了这些模型可以在一台机器上处理多少上下文。开发人员扩展了模型以处理极长的上下文,并发现模型仍然表现良好,尽管上下文尺寸较小时性能有所下降。
在这里插入图片描述

除了语言建模之外,该研究还测试了其他任务,包括在很长的对话中找到特定的主题。开发人员的模型在这项任务中的表现与最先进的模型类似,甚至在某些情况下表现得更好。值得一提的是,与竞争对手相比,开发人员的模型能够更有效地适应开源数据。

LongLoRA表明,大模型能够处理的信息越多,理解语言的能力就越强。并且它不仅擅长处理长文本,而且LongLoRA也非常擅长在长对话中找到特定的主题。这表明它可以处理现实世界中复杂而混乱的任务。

但因为加大了上下文窗口,所以LongLoRA在处理较短的文本片段时会有一些问题,这个问题作者还没有找到原因。

在这里插入图片描述

总体来说,LongLoRA 在大型语言模型领域提出了创新方法,在处理大量信息时,也可以更轻松、更高效地微调这些模型,而必须消耗更多的算力资源。

本文素材来源LongLoRA论文,如有侵权请联系删除

这篇关于LongLoRA:超长上下文,大语言模型高效微调方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/163549

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll