Pytorch使用DataLoader, num_workers!=0时的内存泄露

2023-10-08 05:30

本文主要是介绍Pytorch使用DataLoader, num_workers!=0时的内存泄露,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 描述一下背景,和遇到的问题:

我在做一个超大数据集的多分类,设备Ubuntu 22.04+i9 13900K+Nvidia 4090+64GB RAM,第一次的训练的训练集有700万张,训练成功。后面收集到更多数据集,数据增强后达到了1000万张。但第二次训练4个小时后,就被系统杀掉进程了,原因是Out of Memory。找了很久的原因,发现内存随着训练step的增加而线性增加,猜测是内存泄露,最后定位到了DataLoader的num_workers参数(只要num_workers=0就没有问题)。

  • 真正原因:

Python(Pytorch)中的list转换成tensor时,会发生内存泄漏,要避免list的使用,可以通过使用np.array来代替list。

  • 解决办法:

自定义DataLoader中的Dataset类,然后Dataset类中的list全部用np.array来代替。这样的话,DataLoader将np.array转换成Tensor的过程就不会发生内存泄露。

  • 下面给两个错误的示例代码和一个正确的代码:(都是我自己犯过的错误)

1.错误的DataLoader加载数据集方法1

# 加载数据
train_data = datasets.ImageFolder(root=TRAIN_DIR_ARG, transform=transform)
valid_data = datasets.ImageFolder(root=VALIDATION_DIR, transform=transform)
test_data = datasets.ImageFolder(root=TEST_DIR, transform=transform)train_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=8)
valid_loader = DataLoader(valid_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8)
test_loader = DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8)

2.错误的DataLoader加载数据集方法2(重写了Dataset方法)


class CustomDataset(Dataset):def __init__(self, data_dir, transform=None):self.data_dir = data_dirself.transform = transformself.image_paths = []self.labels = []# 遍历数据目录并收集图像文件路径和对应的标签classes = os.listdir(data_dir)for i, class_name in enumerate(classes):class_dir = os.path.join(data_dir, class_name)if os.path.isdir(class_dir):for image_name in os.listdir(class_dir):image_path = os.path.join(class_dir, image_name)self.image_paths.append(image_path)self.labels.append(i)def __len__(self):return len(self.image_paths)def __getitem__(self, idx):image_path = self.image_paths[idx]label = self.labels[idx]# # 在需要时加载图像image = Image.open(image_path)if self.transform:image = self.transform(image)return image, labeltrain_data = CustomDataset(data_dir=TRAIN_DIR_ARG, transform=transform)
valid_data = CustomDataset(data_dir=VALIDATION_DIR, transform=transform)
test_data = CustomDataset(data_dir=TEST_DIR, transform=transform)train_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=18)
valid_loader = DataLoader(valid_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8)
test_loader = DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8, pin_memory=False)

3.重写Dataset的正确方法(重写了Dataset方法,list全部转成np.array)

class CustomDataset(Dataset):def __init__(self, data_dir, transform=None):self.data_dir = data_dirself.transform = transformself.image_paths = []  # 使用Python列表self.labels = []  # 使用Python列表# 遍历数据目录并收集图像文件路径和对应的标签classes = os.listdir(data_dir)for i, class_name in enumerate(classes):class_dir = os.path.join(data_dir, class_name)if os.path.isdir(class_dir):for image_name in os.listdir(class_dir):image_path = os.path.join(class_dir, image_name)self.image_paths.append(image_path)  # 添加到Python列表self.labels.append(i)  # 添加到Python列表# 转换为NumPy数组,这里就是解决内存泄露的关键代码self.image_paths = np.array(self.image_paths)self.labels = np.array(self.labels)def __len__(self):return len(self.image_paths)def __getitem__(self, idx):image_path = self.image_paths[idx]label = self.labels[idx]# 在需要时加载图像image = Image.open(image_path)if self.transform:image = self.transform(image)# 将图像数据转换为NumPy数组image = np.array(image)return image, labeltrain_data = CustomDataset(data_dir=TRAIN_DIR_ARG, transform=transform)
valid_data = CustomDataset(data_dir=VALIDATION_DIR, transform=transform)
test_data = CustomDataset(data_dir=TEST_DIR, transform=transform)train_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=18)
valid_loader = DataLoader(valid_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8)
test_loader = DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8, pin_memory=False)

这篇关于Pytorch使用DataLoader, num_workers!=0时的内存泄露的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/163008

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意