Pytorch使用DataLoader, num_workers!=0时的内存泄露

2023-10-08 05:30

本文主要是介绍Pytorch使用DataLoader, num_workers!=0时的内存泄露,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 描述一下背景,和遇到的问题:

我在做一个超大数据集的多分类,设备Ubuntu 22.04+i9 13900K+Nvidia 4090+64GB RAM,第一次的训练的训练集有700万张,训练成功。后面收集到更多数据集,数据增强后达到了1000万张。但第二次训练4个小时后,就被系统杀掉进程了,原因是Out of Memory。找了很久的原因,发现内存随着训练step的增加而线性增加,猜测是内存泄露,最后定位到了DataLoader的num_workers参数(只要num_workers=0就没有问题)。

  • 真正原因:

Python(Pytorch)中的list转换成tensor时,会发生内存泄漏,要避免list的使用,可以通过使用np.array来代替list。

  • 解决办法:

自定义DataLoader中的Dataset类,然后Dataset类中的list全部用np.array来代替。这样的话,DataLoader将np.array转换成Tensor的过程就不会发生内存泄露。

  • 下面给两个错误的示例代码和一个正确的代码:(都是我自己犯过的错误)

1.错误的DataLoader加载数据集方法1

# 加载数据
train_data = datasets.ImageFolder(root=TRAIN_DIR_ARG, transform=transform)
valid_data = datasets.ImageFolder(root=VALIDATION_DIR, transform=transform)
test_data = datasets.ImageFolder(root=TEST_DIR, transform=transform)train_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=8)
valid_loader = DataLoader(valid_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8)
test_loader = DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8)

2.错误的DataLoader加载数据集方法2(重写了Dataset方法)


class CustomDataset(Dataset):def __init__(self, data_dir, transform=None):self.data_dir = data_dirself.transform = transformself.image_paths = []self.labels = []# 遍历数据目录并收集图像文件路径和对应的标签classes = os.listdir(data_dir)for i, class_name in enumerate(classes):class_dir = os.path.join(data_dir, class_name)if os.path.isdir(class_dir):for image_name in os.listdir(class_dir):image_path = os.path.join(class_dir, image_name)self.image_paths.append(image_path)self.labels.append(i)def __len__(self):return len(self.image_paths)def __getitem__(self, idx):image_path = self.image_paths[idx]label = self.labels[idx]# # 在需要时加载图像image = Image.open(image_path)if self.transform:image = self.transform(image)return image, labeltrain_data = CustomDataset(data_dir=TRAIN_DIR_ARG, transform=transform)
valid_data = CustomDataset(data_dir=VALIDATION_DIR, transform=transform)
test_data = CustomDataset(data_dir=TEST_DIR, transform=transform)train_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=18)
valid_loader = DataLoader(valid_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8)
test_loader = DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8, pin_memory=False)

3.重写Dataset的正确方法(重写了Dataset方法,list全部转成np.array)

class CustomDataset(Dataset):def __init__(self, data_dir, transform=None):self.data_dir = data_dirself.transform = transformself.image_paths = []  # 使用Python列表self.labels = []  # 使用Python列表# 遍历数据目录并收集图像文件路径和对应的标签classes = os.listdir(data_dir)for i, class_name in enumerate(classes):class_dir = os.path.join(data_dir, class_name)if os.path.isdir(class_dir):for image_name in os.listdir(class_dir):image_path = os.path.join(class_dir, image_name)self.image_paths.append(image_path)  # 添加到Python列表self.labels.append(i)  # 添加到Python列表# 转换为NumPy数组,这里就是解决内存泄露的关键代码self.image_paths = np.array(self.image_paths)self.labels = np.array(self.labels)def __len__(self):return len(self.image_paths)def __getitem__(self, idx):image_path = self.image_paths[idx]label = self.labels[idx]# 在需要时加载图像image = Image.open(image_path)if self.transform:image = self.transform(image)# 将图像数据转换为NumPy数组image = np.array(image)return image, labeltrain_data = CustomDataset(data_dir=TRAIN_DIR_ARG, transform=transform)
valid_data = CustomDataset(data_dir=VALIDATION_DIR, transform=transform)
test_data = CustomDataset(data_dir=TEST_DIR, transform=transform)train_loader = DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=18)
valid_loader = DataLoader(valid_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8)
test_loader = DataLoader(test_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=8, pin_memory=False)

这篇关于Pytorch使用DataLoader, num_workers!=0时的内存泄露的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/163008

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti