集成学习下 01 blending集成学习算法

2023-10-07 22:39
文章标签 算法 学习 01 集成 blending

本文主要是介绍集成学习下 01 blending集成学习算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

集成学习下 01 blending集成学习算法

导读:开源学习地址datawhale

1.何为blending?

blending类似于对多个模型的效果进行融合,具体如下:
1)将数据划分为训练集和测试集,训练集再划分为训练集train_set和验证集val_set
2) 建立第一层的多个模型,通过train_set训练第一层的模型,预测val_set和测试集,得到val_predict和test_predict1
3)创建第二层的模型,根据val_predict训练第二层的模型
4)根据训练好的第二层模型,预测test_predict1。预测结果为整个测试集的结果
在这里插入图片描述

2.示例

#方法二
import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
plt.style.use("ggplot")
%matplotlib inline
import seaborn as sns
from sklearn import datasets 
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split#获取鸢尾花数据
#仅仅考虑0,1类鸢尾花
iris = datasets.load_iris()
X = iris.data
y = iris.target
features = iris.feature_names
iris_data = pd.DataFrame(X, columns=features)
iris_data['target'] = y
# 数据预处理
# 仅仅考虑0,1类鸢尾花
iris_data = iris_data.loc[iris_data.target.isin([0, 1])]
y = iris_data['target'].values
X = iris_data[['sepal length (cm)', 'sepal width (cm)']].values## 创建训练集和测试集
X_train1, X_test, y_train1, y_test = train_test_split(X,y, test_size=0.2,random_state=1)
## 创建训练集和验证集
X_train,X_val,y_train,y_val = train_test_split(X_train1, y_train1, test_size=0.3, random_state=1)
print("The shape of training X:",X_train.shape)
print("The shape of training y:",y_train.shape)
print("The shape of test X:",X_test.shape)
print("The shape of test y:",y_test.shape)
print("The shape of validation X:",X_val.shape)
print("The shape of validation y:",y_val.shape)#  设置第一层分类器
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifierclfs = [SVC(probability = True),RandomForestClassifier(),KNeighborsClassifier()]# 设置第二层分类器
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()val_features = np.zeros((X_val.shape[0],len(clfs)))  # 初始化验证集结果
test_features = np.zeros((X_test.shape[0],len(clfs)))  # 初始化测试集结果for i,clf in enumerate(clfs):clf.fit(X_train,y_train)val_feature = clf.predict(X_val)test_feature = clf.predict(X_test)val_features[:,i] = val_featuretest_features[:,i] = test_feature# 将第一层的验证集的结果输入第二层训练第二层分类器
lr.fit(val_features,y_val)
# 输出预测的结果
from sklearn.model_selection import cross_val_score
cross_val_score(lr,test_features,y_test,cv=5)#默认计算的是模型精度

The shape of training X: (56, 2)
The shape of training y: (56,)
The shape of test X: (20, 2)
The shape of test y: (20,)
The shape of validation X: (24, 2)
The shape of validation y: (24,)
Out[200]:
array([1., 1., 1., 1., 1.])

#决策边界
x_min, x_max = X_test[:, 0].min() - 1, X_test[:, 0].max() + 1
y_min, y_max = X_test[:, 1].min() - 1, X_test[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),np.arange(y_min, y_max, 0.1))
# Obtain labels for each point in mesh using the model.
X_TEST=np.c_[xx.ravel(), yy.ravel()]
meta_X=np.zeros((len(X_TEST),len(clfs)))
for i,clf in enumerate(clfs):yhat= clf.predict(X_TEST)meta_X[:,i]=yhat
# 第二层模型预测
Z = lr.predict(meta_X).reshape(-1, 1).reshape(xx.shape)
plt.contourf(xx, yy, Z, alpha=0.3)
plt.scatter(X_test[y_test == 0, 0], X_test[y_test == 0, 1], c='blue', marker='^')
plt.scatter(X_test[y_test == 1, 0], X_test[y_test == 1, 1], c='red', marker='o')

在这里插入图片描述

这篇关于集成学习下 01 blending集成学习算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/160895

相关文章

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

Docker集成CI/CD的项目实践

《Docker集成CI/CD的项目实践》本文主要介绍了Docker集成CI/CD的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、引言1.1 什么是 CI/CD?1.2 docker 在 CI/CD 中的作用二、Docke

SpringBoot集成SOL链的详细过程

《SpringBoot集成SOL链的详细过程》Solanaj是一个用于与Solana区块链交互的Java库,它为Java开发者提供了一套功能丰富的API,使得在Java环境中可以轻松构建与Solana... 目录一、什么是solanaj?二、Pom依赖三、主要类3.1 RpcClient3.2 Public

SpringBoot3集成swagger文档的使用方法

《SpringBoot3集成swagger文档的使用方法》本文介绍了Swagger的诞生背景、主要功能以及如何在SpringBoot3中集成Swagger文档,Swagger可以帮助自动生成API文档... 目录一、前言1. API 文档自动生成2. 交互式 API 测试3. API 设计和开发协作二、使用