集成学习下 01 blending集成学习算法

2023-10-07 22:39
文章标签 算法 学习 01 集成 blending

本文主要是介绍集成学习下 01 blending集成学习算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

集成学习下 01 blending集成学习算法

导读:开源学习地址datawhale

1.何为blending?

blending类似于对多个模型的效果进行融合,具体如下:
1)将数据划分为训练集和测试集,训练集再划分为训练集train_set和验证集val_set
2) 建立第一层的多个模型,通过train_set训练第一层的模型,预测val_set和测试集,得到val_predict和test_predict1
3)创建第二层的模型,根据val_predict训练第二层的模型
4)根据训练好的第二层模型,预测test_predict1。预测结果为整个测试集的结果
在这里插入图片描述

2.示例

#方法二
import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
plt.style.use("ggplot")
%matplotlib inline
import seaborn as sns
from sklearn import datasets 
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split#获取鸢尾花数据
#仅仅考虑0,1类鸢尾花
iris = datasets.load_iris()
X = iris.data
y = iris.target
features = iris.feature_names
iris_data = pd.DataFrame(X, columns=features)
iris_data['target'] = y
# 数据预处理
# 仅仅考虑0,1类鸢尾花
iris_data = iris_data.loc[iris_data.target.isin([0, 1])]
y = iris_data['target'].values
X = iris_data[['sepal length (cm)', 'sepal width (cm)']].values## 创建训练集和测试集
X_train1, X_test, y_train1, y_test = train_test_split(X,y, test_size=0.2,random_state=1)
## 创建训练集和验证集
X_train,X_val,y_train,y_val = train_test_split(X_train1, y_train1, test_size=0.3, random_state=1)
print("The shape of training X:",X_train.shape)
print("The shape of training y:",y_train.shape)
print("The shape of test X:",X_test.shape)
print("The shape of test y:",y_test.shape)
print("The shape of validation X:",X_val.shape)
print("The shape of validation y:",y_val.shape)#  设置第一层分类器
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifierclfs = [SVC(probability = True),RandomForestClassifier(),KNeighborsClassifier()]# 设置第二层分类器
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()val_features = np.zeros((X_val.shape[0],len(clfs)))  # 初始化验证集结果
test_features = np.zeros((X_test.shape[0],len(clfs)))  # 初始化测试集结果for i,clf in enumerate(clfs):clf.fit(X_train,y_train)val_feature = clf.predict(X_val)test_feature = clf.predict(X_test)val_features[:,i] = val_featuretest_features[:,i] = test_feature# 将第一层的验证集的结果输入第二层训练第二层分类器
lr.fit(val_features,y_val)
# 输出预测的结果
from sklearn.model_selection import cross_val_score
cross_val_score(lr,test_features,y_test,cv=5)#默认计算的是模型精度

The shape of training X: (56, 2)
The shape of training y: (56,)
The shape of test X: (20, 2)
The shape of test y: (20,)
The shape of validation X: (24, 2)
The shape of validation y: (24,)
Out[200]:
array([1., 1., 1., 1., 1.])

#决策边界
x_min, x_max = X_test[:, 0].min() - 1, X_test[:, 0].max() + 1
y_min, y_max = X_test[:, 1].min() - 1, X_test[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),np.arange(y_min, y_max, 0.1))
# Obtain labels for each point in mesh using the model.
X_TEST=np.c_[xx.ravel(), yy.ravel()]
meta_X=np.zeros((len(X_TEST),len(clfs)))
for i,clf in enumerate(clfs):yhat= clf.predict(X_TEST)meta_X[:,i]=yhat
# 第二层模型预测
Z = lr.predict(meta_X).reshape(-1, 1).reshape(xx.shape)
plt.contourf(xx, yy, Z, alpha=0.3)
plt.scatter(X_test[y_test == 0, 0], X_test[y_test == 0, 1], c='blue', marker='^')
plt.scatter(X_test[y_test == 1, 0], X_test[y_test == 1, 1], c='red', marker='o')

在这里插入图片描述

这篇关于集成学习下 01 blending集成学习算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/160895

相关文章

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外

Docker集成CI/CD的项目实践

《Docker集成CI/CD的项目实践》本文主要介绍了Docker集成CI/CD的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、引言1.1 什么是 CI/CD?1.2 docker 在 CI/CD 中的作用二、Docke

SpringBoot集成SOL链的详细过程

《SpringBoot集成SOL链的详细过程》Solanaj是一个用于与Solana区块链交互的Java库,它为Java开发者提供了一套功能丰富的API,使得在Java环境中可以轻松构建与Solana... 目录一、什么是solanaj?二、Pom依赖三、主要类3.1 RpcClient3.2 Public

SpringBoot3集成swagger文档的使用方法

《SpringBoot3集成swagger文档的使用方法》本文介绍了Swagger的诞生背景、主要功能以及如何在SpringBoot3中集成Swagger文档,Swagger可以帮助自动生成API文档... 目录一、前言1. API 文档自动生成2. 交互式 API 测试3. API 设计和开发协作二、使用

SpringBoot如何集成Kaptcha验证码

《SpringBoot如何集成Kaptcha验证码》本文介绍了如何在Java开发中使用Kaptcha生成验证码的功能,包括在pom.xml中配置依赖、在系统公共配置类中添加配置、在控制器中添加生成验证... 目录SpringBoot集成Kaptcha验证码简介实现步骤1. 在 pom.XML 配置文件中2.

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06