本文主要是介绍Circuits-Combinational Logic-Arithmetic Circuits,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
目录
- 1、Half adder
- 2、Full adder
- 3、3-bit binary adder
- 4、Adder
- 5、Signed addition overflow
- 6、100-bit binary adder
- 7、4-digit BCD adder
- 参考资料:https://hdlbits.01xz.net/
1、Half adder
Create a half adder. A half adder adds two bits (with no carry-in) and produces a sum and carry-out.
module top_module( input a, b,output cout, sum );assign cout = a & b;assign sum = a ^ b;
endmodule
2、Full adder
Create a full adder. A full adder adds three bits (including carry-in) and produces a sum and carry-out.
module top_module( input a, b, cin,output cout, sum );assign cout = (a&b) | (a&cin) | (b&cin);assign sum = a ^ b ^ cin;
endmodule
3、3-bit binary adder
Now that you know how to build a full adder, make 3 instances of it to create a 3-bit binary ripple-carry adder. The adder adds two 3-bit numbers and a carry-in to produce a 3-bit sum and carry out. To encourage you to actually instantiate full adders, also output the carry-out from each full adder in the ripple-carry adder. cout[2] is the final carry-out from the last full adder, and is the carry-out you usually see.
module top_module( input [2:0] a, b,input cin,output [2:0] cout,output [2:0] sum );assign {cout[0],sum[0]} = a[0] + b[0] + cin;assign {cout[1],sum[1]} = a[1] + b[1] + cout[0];assign {cout[2],sum[2]} = a[2] + b[2] + cout[1];
endmodule
4、Adder
module top_module (input [3:0] x,input [3:0] y, output [4:0] sum);wire cout[2:0];assign {cout[0],sum[0]} = x[0] + y[0];assign {cout[1],sum[1]} = x[1] + y[1] + cout[0];assign {cout[2],sum[2]} = x[2] + y[2] + cout[1];assign {sum[4] ,sum[3]} = x[3] + y[3] + cout[2];
endmodule
5、Signed addition overflow
Assume that you have two 8-bit 2’s complement numbers, a[7:0] and b[7:0]. These numbers are added to produce s[7:0]. Also compute whether a (signed) overflow has occurred.
A signed overflow occurs when adding two positive numbers produces a negative result, or adding two negative numbers produces a positive result. There are several methods to detect overflow: It could be computed by comparing the signs of the input and output numbers, or derived from the carry-out of bit n and n-1.
a、b分别两个数的符号位,c为运算结果符号位。
当a =b =0(两数同为正),而c=1(结果为负)时,负溢出;
当a =b =1(两数同为负),而c=0(结果为正)时,正溢出.
module top_module (input [7:0] a,input [7:0] b,output [7:0] s,output overflow
); //assign s = a + b;assign overflow = (a[7]&b[7]&(~s[7])) | ((~a[7])&(~b[7])&s[7]);endmodule
6、100-bit binary adder
Create a 100-bit binary adder. The adder adds two 100-bit numbers and a carry-in to produce a 100-bit sum and carry out.
module top_module( input [99:0] a, b,input cin,output cout,output [99:0] sum );assign {cout,sum[99:0]} = a + b + cin;
endmodule
7、4-digit BCD adder
You are provided with a BCD (binary-coded decimal) one-digit adder named bcd_fadd that adds two BCD digits and carry-in, and produces a sum and carry-out.
module bcd_fadd {
input [3:0] a,
input [3:0] b,
input cin,
output cout,
output [3:0] sum );
Instantiate 4 copies of bcd_fadd to create a 4-digit BCD ripple-carry adder. Your adder should add two 4-digit BCD numbers (packed into 16-bit vectors) and a carry-in to produce a 4-digit sum and carry out.
module top_module( input [15:0] a, b,input cin,output cout,output [15:0] sum );wire [2:0] cinout;bcd_fadd a1 (a[3:0], b[3:0], cin, cinout[0], sum[3:0]);bcd_fadd a2 (a[7:4], b[7:4], cinout[0], cinout[1], sum[7:4]);bcd_fadd a3 (a[11:8], b[11:8], cinout[1], cinout[2], sum[11:8]);bcd_fadd a4 (a[15:12], b[15:12], cinout[2], cout, sum[15:12]);
endmodule
参考资料:https://hdlbits.01xz.net/
这篇关于Circuits-Combinational Logic-Arithmetic Circuits的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!