neo4j路径发现算法(Path finding algorithms)-6.The Yen’s K-shortest paths algorithm

本文主要是介绍neo4j路径发现算法(Path finding algorithms)-6.The Yen’s K-shortest paths algorithm,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.介绍:
  k条最短路径算法(KSP):通常情况下,最短路径问题分为:单源最短路径和所有顶点对之间的最短路径,但两个都有一个问题,两种都只考虑两点之间最短的那一条路径,不考虑次短,再次短等路径。
  KSP问题是对最短路径问题的推广,它除了要确定最短路径之外,还要确定次短路径、第三短路径,…,知道找到第K短路径。用Pi表示从起点s到终点t的第i短路径,KSP问题是确定路径集合Pk={p1,p2,p3,…,pk},使得满足以下3个条件:
1)K条路径是按次序产生的,即对于所有的i(i=1,2,…,K-1),pi是在pi+1之前确定;
2)K条路径是按长度从小到大排列的,即对于所有的i(i=1,2,…,K-1),都有c(pi)<c(pi+1);
3)这K条路径是最短的,即对于所有的p∈Pst-PK,都有c(pk)<c§。

算法思想:算出第一条最短路径p(1),然后在比基础上依次算出其他的k-1条最短路径。在求p(i+1)时,将p(i)上除了终止节点外的所有节点视为偏离节点,并计算每个偏离点到终止节点的最短路径,再与之前的p(i)上起始节点到偏离节点的路径拼接,构成候选路径,进而求得最短偏离路径。

二. neo4j算法:

CALL algo.kShortestPaths(startNode:Node, endNode:Node, k:int, weightProperty:String,
{nodeQuery:'labelName', relationshipQuery:'relationshipName', direction:'OUT',
defaultValue:1.0,
maxDepth:42, write:'true', writePropertyPrefix:'PATH_'})
YIELD resultCount, loadMillis, evalMillis, writeMillis

三 .实例:

MERGE (a:Loc {name:'A'})
MERGE (b:Loc {name:'B'})
MERGE (c:Loc {name:'C'})
MERGE (d:Loc {name:'D'})
MERGE (e:Loc {name:'E'})
MERGE (f:Loc {name:'F'})
MERGE (a)-[:ROAD {cost:50}]->(b)
MERGE (a)-[:ROAD {cost:50}]->(c)
MERGE (a)-[:ROAD {cost:100}]->(d)
MERGE (b)-[:ROAD {cost:40}]->(d)
MERGE (c)-[:ROAD {cost:40}]->(d)
MERGE (c)-[:ROAD {cost:80}]->(e)
MERGE (d)-[:ROAD {cost:30}]->(e)
MERGE (d)-[:ROAD {cost:80}]->(f)
MERGE (e)-[:ROAD {cost:40}]->(f);

在这里插入图片描述

MATCH (start:Loc{name:'A'}), (end:Loc{name:'F'})
CALL algo.kShortestPaths.stream(start, end, 5, 'cost' ,{})
YIELD index, nodeIds, costs
RETURN [node in algo.getNodesById(nodeIds) | node.name] AS places,
costs,
reduce(acc = 0.0, cost in costs | acc + cost) AS totalCost

根据设置,我们得出了5条从节点A到节点F的最短路径
在这里插入图片描述

这篇关于neo4j路径发现算法(Path finding algorithms)-6.The Yen’s K-shortest paths algorithm的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/160367

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

利用Python把路径转为绝对路径的方法

《利用Python把路径转为绝对路径的方法》在Python中,如果你有一个相对路径并且想将其转换为绝对路径,你可以使用Path对象的resolve()方法,Path是Python标准库pathlib中... 目录1. os.path.abspath 是什么?怎么用?基本用法2. os.path.abspat

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Spring Boot中的路径变量示例详解

《SpringBoot中的路径变量示例详解》SpringBoot中PathVariable通过@PathVariable注解实现URL参数与方法参数绑定,支持多参数接收、类型转换、可选参数、默认值及... 目录一. 基本用法与参数映射1.路径定义2.参数绑定&nhttp://www.chinasem.cnbs

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键