深度学习-从零开始(2) - LinearRegression

2023-10-07 20:33

本文主要是介绍深度学习-从零开始(2) - LinearRegression,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本章背景

本章是来源于coursera课程 python-machine-learning中的作业2内容。

本章内容

  • 多项式线性回归
  • 决定系数 R2 (coefficient of determination) 的计算
  • ridge线性回归
  • lasso线性回归

参考

  • 评价回归模型
  • r2_score为负数的问题探讨

0. Polynomial LinearRegression(多项式线性回归)

随机创建如下数据:

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_splitnp.random.seed(0)
n = 15
x = np.linspace(0,10,n) + np.random.randn(n)/5
y = np.sin(x)+x/6 + np.random.randn(n)/10X_train, X_test, y_train, y_test = train_test_split(x, y, random_state=0)

创建特定维度的多项式线性回归:

使用degree = 1,3,6 and 9 来训练X_train,并随机生成一些预测数据验证拟合结果:

def test_1():from sklearn.linear_model import LinearRegressionfrom sklearn.preprocessing import PolynomialFeaturesxx_pred = np.linspace(0, 10, 100)degrees = [1, 3, 6, 9]results = []for index in range(0, 4):degree = degrees[index]regression = LinearRegression()featurizer = PolynomialFeatures(degree=degree)X_train_features = featurizer.fit_transform(X_train.reshape(-1, 1))regression.fit(X_train_features, y_train.reshape(-1, 1))xx_pred_features = featurizer.transform(xx_pred.reshape(-1, 1))yy_pred = regression.predict(xx_pred_features)# append the resultsresults.append(yy_pred.reshape(1, -1))return np.concatenate(results)# 将几个维度的多项式拟合曲线绘制出来
def plot_results(degree_predictions):import matplotlib.pyplot as pltplt.figure(figsize=(10,5))plt.plot(X_train, y_train, 'o', label='training data', markersize=10)plt.plot(X_test, y_test, 'o', label='test data', markersize=10)for i,degree in enumerate([1,3,6,9]):plt.plot(np.linspace(0,10,100), degree_predictions[i], alpha=0.8, lw=2, label='degree={}'.format(degree))plt.ylim(-1,2.5)plt.legend(loc=4)plt.show()plot_results(test_1())

1. coefficient of determination (决定系数R2)

决定系数(coefficient of determination)的计算方法:
R2-score公式
R2期待值越接近1说明拟合越好,越接近0说明拟合结果差。同时根据公式可以发现,在实际计算中R2是可能为负数的,通过简单计算,当R^2为负数时,说明:
当R2-score为负数
说明拟合结果差到不如使用均值。
还是使用上面的数据,分别计算X_train 和 X_test的R^2:

def test_2():from sklearn.linear_model import LinearRegressionfrom sklearn.preprocessing import PolynomialFeaturesfrom sklearn.metrics.regression import r2_score# Your code hereresults = []model_cnt = 10result_train = []result_test = []for degree in range(0, model_cnt):linearRegression = LinearRegression()featurizer = PolynomialFeatures(degree=degree)X_train_features = featurizer.fit_transform(X_train.reshape(-1, 1))y_train_features = y_train.reshape(-1, 1)linearRegression.fit(X_train_features, y_train_features)y_train_pred = linearRegression.predict(X_train_features)print('X_train r2_score ==> : ', r2_score(y_train_features, y_train_pred))result_train.append(r2_score(y_train_features, y_train_pred))# calculate the values for Test setX_test_features = featurizer.transform(X_test.reshape(-1, 1))y_test_pred = linearRegression.predict(X_test_features)y_test_features = y_test.reshape(-1, 1)print('X_test r2-score ==> : ', r2_score(y_test_features, y_test_pred))result_test.append(r2_score(y_test_features, y_test_pred))results.append(np.array(result_train).reshape(10, ))results.append(np.array(result_test).reshape(10, ))print(results[0].shape, results[1].shape)print(results)return results# Your answer here

从代码中也可以看出来,在sklearn工具包中已经包含了r2_score的计算函数,直接传入真实值和预测值即可计算,当然可以通过如上公式自行计算。

2. Ridge线性回归

Ridge线性回归是改良后的最小二乘法, 是有偏估计的回归方法, 即给损失函数加上一个正则化项, 也叫惩罚项(L2范数),防止过拟合。

Ridge回归的特点是以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最小二乘法。

Ridge的公式如下
Ridge回归损失函数
其中, m是样本量, n是特征数, λ是惩罚项参数(其取值大于0), 加惩罚项主要为了让模型参数的取值不能过大. 当λ趋于无穷大时, 对应βj趋向于0, 而βj表示的是因变量随着某一自变量改变一个单位而变化的数值(假设其他自变量均保持不变), 这时, 自变量之间的共线性对因变量的影响几乎不存在, 故其能有效解决自变量之间的多重共线性问题, 同时也能防止过拟合.

代码示例:

    import numpy as npimport pandas as pdfrom sklearn.model_selection import train_test_splitfrom matplotlib.pyplot import MultipleLocatorfrom sklearn.preprocessing import PolynomialFeaturesfrom sklearn.linear_model import Lasso, LinearRegression, Ridgefrom sklearn.metrics.regression import r2_scorenp.random.seed(0)n = 15x = np.linspace(0, 10, n) + np.random.randn(n) / 5y = np.sin(x) + x / 6 + np.random.randn(n) / 10X_train, X_test, y_train, y_test = train_test_split(x, y, random_state=0)# Your code herenormalLinearRegression = LinearRegression()ridgeLinearRegression = Ridge(alpha=0.01, max_iter=10000, solver='svd')featurizer = PolynomialFeatures(degree=12)X_train_features = featurizer.fit_transform(X_train.reshape(-1, 1))X_test_features = featurizer.transform(X_test.reshape(-1, 1))# train the non-regularized linearRegression modelnormalLinearRegression.fit(X_train_features, y_train.reshape(-1, 1))y_test_pred_normal = normalLinearRegression.predict(X_test_features)# cal the R2 score for non-regularized modelr2_score_normal = r2_score(y_test.reshape(-1, 1), y_test_pred_normal)print('non-regularized linearRegression r2-score ==> ', r2_score_normal)# train the ridge linearRegression modelridgeLinearRegression.fit(X_train_features, y_train.reshape(-1, 1))y_test_pred_ridge = ridgeLinearRegression.predict(X_test_features)# cal the R2-score for Ridge-regressionr2_score_ridge = r2_score(y_test.reshape(-1, 1), y_test_pred_ridge)print('ridge-regularized linearRegression r2-score ==> ', r2_score_ridge)

Ridge回归并不能解决减少系数/维度数量的问题,其系数均不为0。

3. LASSO线性回归

模型参数越多复杂度越高,即使用线性回归依然有很多的参数需要训练,并且这也会造成一定程度上的过拟合。并且最终得到的模型的可解释性也不高。这个时候可以考虑引入lasso回归。

Lasso回归的特点是可以在拟合训练数据的同时进行变量选择(Variable Selection)。那么它是通过什么机制选择的呢?答案就是:正则化(Regularization)!或者可以简单的把这个东西叫做惩罚项。

LASSO的公式如下
Lasso回归损失函数
代码示例:

    import numpy as npimport pandas as pdfrom sklearn.model_selection import train_test_splitfrom matplotlib.pyplot import MultipleLocatorfrom sklearn.preprocessing import PolynomialFeaturesfrom sklearn.linear_model import Lasso, LinearRegression, Ridgefrom sklearn.metrics.regression import r2_scorenp.random.seed(0)n = 15x = np.linspace(0, 10, n) + np.random.randn(n) / 5y = np.sin(x) + x / 6 + np.random.randn(n) / 10X_train, X_test, y_train, y_test = train_test_split(x, y, random_state=0)# Your code herenormalLinearRegression = LinearRegression()ridgeLinearRegression = Ridge(alpha=0.01, max_iter=10000, solver='svd')featurizer = PolynomialFeatures(degree=12)X_train_features = featurizer.fit_transform(X_train.reshape(-1, 1))X_test_features = featurizer.transform(X_test.reshape(-1, 1))# train the non-regularized linearRegression modelnormalLinearRegression.fit(X_train_features, y_train.reshape(-1, 1))y_test_pred_normal = normalLinearRegression.predict(X_test_features)# cal the R2 score for non-regularized modelr2_score_normal = r2_score(y_test.reshape(-1, 1), y_test_pred_normal)print('non-regularized linearRegression r2-score ==> ', r2_score_normal)# train the lasso linearRegression modellassoLinearRegression.fit(X_train_features, y_train.reshape(-1, 1))y_test_pred_lasso = lassoLinearRegression.predict(X_test_features)# cal the R2 score for lasso-regularized modelr2_score_lasso = r2_score(y_test.reshape(-1, 1), y_test_pred_lasso)print('lasso-regularized linearRegression r2-score ==> ', r2_score_lasso)

Lasso回归可以解决减少系数/维度数量的问题,其部分系数为0。

这篇关于深度学习-从零开始(2) - LinearRegression的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/160267

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操